Properties

Label 2-1575-1.1-c3-0-85
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.60·2-s + 13.1·4-s + 7·7-s + 23.8·8-s + 52.9·11-s + 19.6·13-s + 32.2·14-s + 4.19·16-s − 61.5·17-s + 27.0·19-s + 243.·22-s − 19.2·23-s + 90.2·26-s + 92.2·28-s + 167.·29-s + 225.·31-s − 171.·32-s − 283.·34-s + 311.·37-s + 124.·38-s − 12.8·41-s − 114.·43-s + 697.·44-s − 88.4·46-s + 207.·47-s + 49·49-s + 258.·52-s + ⋯
L(s)  = 1  + 1.62·2-s + 1.64·4-s + 0.377·7-s + 1.05·8-s + 1.45·11-s + 0.418·13-s + 0.614·14-s + 0.0655·16-s − 0.877·17-s + 0.327·19-s + 2.36·22-s − 0.174·23-s + 0.680·26-s + 0.622·28-s + 1.07·29-s + 1.30·31-s − 0.945·32-s − 1.42·34-s + 1.38·37-s + 0.532·38-s − 0.0487·41-s − 0.405·43-s + 2.39·44-s − 0.283·46-s + 0.645·47-s + 0.142·49-s + 0.688·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.046461268\)
\(L(\frac12)\) \(\approx\) \(7.046461268\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 4.60T + 8T^{2} \)
11 \( 1 - 52.9T + 1.33e3T^{2} \)
13 \( 1 - 19.6T + 2.19e3T^{2} \)
17 \( 1 + 61.5T + 4.91e3T^{2} \)
19 \( 1 - 27.0T + 6.85e3T^{2} \)
23 \( 1 + 19.2T + 1.21e4T^{2} \)
29 \( 1 - 167.T + 2.43e4T^{2} \)
31 \( 1 - 225.T + 2.97e4T^{2} \)
37 \( 1 - 311.T + 5.06e4T^{2} \)
41 \( 1 + 12.8T + 6.89e4T^{2} \)
43 \( 1 + 114.T + 7.95e4T^{2} \)
47 \( 1 - 207.T + 1.03e5T^{2} \)
53 \( 1 + 227.T + 1.48e5T^{2} \)
59 \( 1 - 605.T + 2.05e5T^{2} \)
61 \( 1 + 315.T + 2.26e5T^{2} \)
67 \( 1 - 720.T + 3.00e5T^{2} \)
71 \( 1 - 56.2T + 3.57e5T^{2} \)
73 \( 1 + 1.15e3T + 3.89e5T^{2} \)
79 \( 1 - 1.15e3T + 4.93e5T^{2} \)
83 \( 1 + 692.T + 5.71e5T^{2} \)
89 \( 1 + 1.41e3T + 7.04e5T^{2} \)
97 \( 1 - 661.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.999793589605456452800821061686, −8.208718184942912046615153386147, −6.99518441399130246247161077767, −6.43426336740754356236685980547, −5.76550558178173522107636173244, −4.62179352516964987083629579962, −4.23862940236413818815328166314, −3.26899224861962938088793056437, −2.26969771098484712920137327649, −1.07461484927796161767912244916, 1.07461484927796161767912244916, 2.26969771098484712920137327649, 3.26899224861962938088793056437, 4.23862940236413818815328166314, 4.62179352516964987083629579962, 5.76550558178173522107636173244, 6.43426336740754356236685980547, 6.99518441399130246247161077767, 8.208718184942912046615153386147, 8.999793589605456452800821061686

Graph of the $Z$-function along the critical line