Properties

Label 2-1575-1.1-c3-0-74
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.42·2-s + 11.5·4-s − 7·7-s − 15.7·8-s − 23.3·11-s − 3.56·13-s + 30.9·14-s − 22.7·16-s + 57.5·17-s − 51.1·19-s + 103.·22-s + 65.6·23-s + 15.7·26-s − 80.9·28-s + 41.6·29-s − 167.·31-s + 226.·32-s − 254.·34-s + 224.·37-s + 226.·38-s + 196.·41-s − 58.9·43-s − 270.·44-s − 290.·46-s + 41.9·47-s + 49·49-s − 41.2·52-s + ⋯
L(s)  = 1  − 1.56·2-s + 1.44·4-s − 0.377·7-s − 0.697·8-s − 0.640·11-s − 0.0761·13-s + 0.591·14-s − 0.354·16-s + 0.820·17-s − 0.617·19-s + 1.00·22-s + 0.595·23-s + 0.119·26-s − 0.546·28-s + 0.266·29-s − 0.970·31-s + 1.25·32-s − 1.28·34-s + 0.997·37-s + 0.965·38-s + 0.749·41-s − 0.209·43-s − 0.926·44-s − 0.930·46-s + 0.130·47-s + 0.142·49-s − 0.110·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 + 4.42T + 8T^{2} \)
11 \( 1 + 23.3T + 1.33e3T^{2} \)
13 \( 1 + 3.56T + 2.19e3T^{2} \)
17 \( 1 - 57.5T + 4.91e3T^{2} \)
19 \( 1 + 51.1T + 6.85e3T^{2} \)
23 \( 1 - 65.6T + 1.21e4T^{2} \)
29 \( 1 - 41.6T + 2.43e4T^{2} \)
31 \( 1 + 167.T + 2.97e4T^{2} \)
37 \( 1 - 224.T + 5.06e4T^{2} \)
41 \( 1 - 196.T + 6.89e4T^{2} \)
43 \( 1 + 58.9T + 7.95e4T^{2} \)
47 \( 1 - 41.9T + 1.03e5T^{2} \)
53 \( 1 + 33.3T + 1.48e5T^{2} \)
59 \( 1 + 229.T + 2.05e5T^{2} \)
61 \( 1 + 700.T + 2.26e5T^{2} \)
67 \( 1 - 453.T + 3.00e5T^{2} \)
71 \( 1 - 930.T + 3.57e5T^{2} \)
73 \( 1 + 370.T + 3.89e5T^{2} \)
79 \( 1 + 54.6T + 4.93e5T^{2} \)
83 \( 1 + 430.T + 5.71e5T^{2} \)
89 \( 1 + 737.T + 7.04e5T^{2} \)
97 \( 1 + 150.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.738787463429610284675419635444, −7.940601185091375696018447145532, −7.38845279530899963864443102867, −6.52948058013293642215949434825, −5.60035410689743955010456760449, −4.46219546241992902138788079343, −3.14588794821273491207127706704, −2.17412756180701093862960969476, −1.01983443144480862861872200845, 0, 1.01983443144480862861872200845, 2.17412756180701093862960969476, 3.14588794821273491207127706704, 4.46219546241992902138788079343, 5.60035410689743955010456760449, 6.52948058013293642215949434825, 7.38845279530899963864443102867, 7.940601185091375696018447145532, 8.738787463429610284675419635444

Graph of the $Z$-function along the critical line