Properties

Label 2-1575-1.1-c3-0-72
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.53·2-s + 12.5·4-s + 7·7-s + 20.5·8-s + 19.0·11-s + 2.93·13-s + 31.7·14-s − 7.21·16-s − 6.49·17-s − 5.43·19-s + 86.3·22-s + 49.3·23-s + 13.3·26-s + 87.7·28-s + 291.·29-s + 244.·31-s − 196.·32-s − 29.4·34-s + 193.·37-s − 24.6·38-s − 315.·41-s + 300.·43-s + 238.·44-s + 223.·46-s + 86.5·47-s + 49·49-s + 36.8·52-s + ⋯
L(s)  = 1  + 1.60·2-s + 1.56·4-s + 0.377·7-s + 0.907·8-s + 0.522·11-s + 0.0626·13-s + 0.605·14-s − 0.112·16-s − 0.0927·17-s − 0.0656·19-s + 0.837·22-s + 0.447·23-s + 0.100·26-s + 0.592·28-s + 1.86·29-s + 1.41·31-s − 1.08·32-s − 0.148·34-s + 0.858·37-s − 0.105·38-s − 1.20·41-s + 1.06·43-s + 0.818·44-s + 0.717·46-s + 0.268·47-s + 0.142·49-s + 0.0981·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.506824654\)
\(L(\frac12)\) \(\approx\) \(6.506824654\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 4.53T + 8T^{2} \)
11 \( 1 - 19.0T + 1.33e3T^{2} \)
13 \( 1 - 2.93T + 2.19e3T^{2} \)
17 \( 1 + 6.49T + 4.91e3T^{2} \)
19 \( 1 + 5.43T + 6.85e3T^{2} \)
23 \( 1 - 49.3T + 1.21e4T^{2} \)
29 \( 1 - 291.T + 2.43e4T^{2} \)
31 \( 1 - 244.T + 2.97e4T^{2} \)
37 \( 1 - 193.T + 5.06e4T^{2} \)
41 \( 1 + 315.T + 6.89e4T^{2} \)
43 \( 1 - 300.T + 7.95e4T^{2} \)
47 \( 1 - 86.5T + 1.03e5T^{2} \)
53 \( 1 - 509.T + 1.48e5T^{2} \)
59 \( 1 - 83.3T + 2.05e5T^{2} \)
61 \( 1 + 5.25T + 2.26e5T^{2} \)
67 \( 1 + 205.T + 3.00e5T^{2} \)
71 \( 1 + 1.00e3T + 3.57e5T^{2} \)
73 \( 1 - 1.00e3T + 3.89e5T^{2} \)
79 \( 1 + 863.T + 4.93e5T^{2} \)
83 \( 1 - 1.33e3T + 5.71e5T^{2} \)
89 \( 1 + 326.T + 7.04e5T^{2} \)
97 \( 1 + 1.52e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.960656834628883649582115361595, −8.186452121397549362486943745535, −7.06808266693983678354571484620, −6.43959070042050899162803219312, −5.66835861805718313452857892909, −4.71682878057123809705274692271, −4.24060652882825234153686283219, −3.16535486675948784249367220519, −2.36092577727575558637389361475, −1.01387528047532492512745754127, 1.01387528047532492512745754127, 2.36092577727575558637389361475, 3.16535486675948784249367220519, 4.24060652882825234153686283219, 4.71682878057123809705274692271, 5.66835861805718313452857892909, 6.43959070042050899162803219312, 7.06808266693983678354571484620, 8.186452121397549362486943745535, 8.960656834628883649582115361595

Graph of the $Z$-function along the critical line