L(s) = 1 | + 4.53·2-s + 12.5·4-s + 7·7-s + 20.5·8-s + 19.0·11-s + 2.93·13-s + 31.7·14-s − 7.21·16-s − 6.49·17-s − 5.43·19-s + 86.3·22-s + 49.3·23-s + 13.3·26-s + 87.7·28-s + 291.·29-s + 244.·31-s − 196.·32-s − 29.4·34-s + 193.·37-s − 24.6·38-s − 315.·41-s + 300.·43-s + 238.·44-s + 223.·46-s + 86.5·47-s + 49·49-s + 36.8·52-s + ⋯ |
L(s) = 1 | + 1.60·2-s + 1.56·4-s + 0.377·7-s + 0.907·8-s + 0.522·11-s + 0.0626·13-s + 0.605·14-s − 0.112·16-s − 0.0927·17-s − 0.0656·19-s + 0.837·22-s + 0.447·23-s + 0.100·26-s + 0.592·28-s + 1.86·29-s + 1.41·31-s − 1.08·32-s − 0.148·34-s + 0.858·37-s − 0.105·38-s − 1.20·41-s + 1.06·43-s + 0.818·44-s + 0.717·46-s + 0.268·47-s + 0.142·49-s + 0.0981·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(6.506824654\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.506824654\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 - 4.53T + 8T^{2} \) |
| 11 | \( 1 - 19.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 2.93T + 2.19e3T^{2} \) |
| 17 | \( 1 + 6.49T + 4.91e3T^{2} \) |
| 19 | \( 1 + 5.43T + 6.85e3T^{2} \) |
| 23 | \( 1 - 49.3T + 1.21e4T^{2} \) |
| 29 | \( 1 - 291.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 244.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 193.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 315.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 300.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 86.5T + 1.03e5T^{2} \) |
| 53 | \( 1 - 509.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 83.3T + 2.05e5T^{2} \) |
| 61 | \( 1 + 5.25T + 2.26e5T^{2} \) |
| 67 | \( 1 + 205.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 1.00e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.00e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 863.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.33e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 326.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.52e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.960656834628883649582115361595, −8.186452121397549362486943745535, −7.06808266693983678354571484620, −6.43959070042050899162803219312, −5.66835861805718313452857892909, −4.71682878057123809705274692271, −4.24060652882825234153686283219, −3.16535486675948784249367220519, −2.36092577727575558637389361475, −1.01387528047532492512745754127,
1.01387528047532492512745754127, 2.36092577727575558637389361475, 3.16535486675948784249367220519, 4.24060652882825234153686283219, 4.71682878057123809705274692271, 5.66835861805718313452857892909, 6.43959070042050899162803219312, 7.06808266693983678354571484620, 8.186452121397549362486943745535, 8.960656834628883649582115361595