Properties

Label 2-1575-1.1-c3-0-57
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.236·2-s − 7.94·4-s + 7·7-s − 3.76·8-s + 50.4·11-s + 80.9·13-s + 1.65·14-s + 62.6·16-s + 76.3·17-s + 4.13·19-s + 11.9·22-s − 204.·23-s + 19.1·26-s − 55.6·28-s + 91.1·29-s + 198.·31-s + 44.9·32-s + 18.0·34-s − 155.·37-s + 0.976·38-s + 156.·41-s − 354.·43-s − 400.·44-s − 48.3·46-s − 175.·47-s + 49·49-s − 643.·52-s + ⋯
L(s)  = 1  + 0.0834·2-s − 0.993·4-s + 0.377·7-s − 0.166·8-s + 1.38·11-s + 1.72·13-s + 0.0315·14-s + 0.979·16-s + 1.08·17-s + 0.0499·19-s + 0.115·22-s − 1.85·23-s + 0.144·26-s − 0.375·28-s + 0.583·29-s + 1.14·31-s + 0.248·32-s + 0.0909·34-s − 0.691·37-s + 0.00416·38-s + 0.597·41-s − 1.25·43-s − 1.37·44-s − 0.154·46-s − 0.545·47-s + 0.142·49-s − 1.71·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.340598275\)
\(L(\frac12)\) \(\approx\) \(2.340598275\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 0.236T + 8T^{2} \)
11 \( 1 - 50.4T + 1.33e3T^{2} \)
13 \( 1 - 80.9T + 2.19e3T^{2} \)
17 \( 1 - 76.3T + 4.91e3T^{2} \)
19 \( 1 - 4.13T + 6.85e3T^{2} \)
23 \( 1 + 204.T + 1.21e4T^{2} \)
29 \( 1 - 91.1T + 2.43e4T^{2} \)
31 \( 1 - 198.T + 2.97e4T^{2} \)
37 \( 1 + 155.T + 5.06e4T^{2} \)
41 \( 1 - 156.T + 6.89e4T^{2} \)
43 \( 1 + 354.T + 7.95e4T^{2} \)
47 \( 1 + 175.T + 1.03e5T^{2} \)
53 \( 1 - 200.T + 1.48e5T^{2} \)
59 \( 1 - 312.T + 2.05e5T^{2} \)
61 \( 1 + 154.T + 2.26e5T^{2} \)
67 \( 1 + 734.T + 3.00e5T^{2} \)
71 \( 1 - 678.T + 3.57e5T^{2} \)
73 \( 1 - 60.8T + 3.89e5T^{2} \)
79 \( 1 + 1.28e3T + 4.93e5T^{2} \)
83 \( 1 - 116.T + 5.71e5T^{2} \)
89 \( 1 - 916.T + 7.04e5T^{2} \)
97 \( 1 - 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.845604869942392620376622277370, −8.474341455024723470936567120092, −7.68791290025835345030087649929, −6.34629257629547888247689509972, −5.91615389287345527139436811812, −4.79154641553107522513901292180, −3.92538522091243805615370411817, −3.40903490882162041523356912234, −1.61170418332528786560906348292, −0.815818025496236676430602633103, 0.815818025496236676430602633103, 1.61170418332528786560906348292, 3.40903490882162041523356912234, 3.92538522091243805615370411817, 4.79154641553107522513901292180, 5.91615389287345527139436811812, 6.34629257629547888247689509972, 7.68791290025835345030087649929, 8.474341455024723470936567120092, 8.845604869942392620376622277370

Graph of the $Z$-function along the critical line