Properties

Label 2-1575-1.1-c3-0-54
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.37·2-s + 3.42·4-s − 7·7-s − 15.4·8-s + 45.0·11-s + 35.4·13-s − 23.6·14-s − 79.6·16-s − 29.4·17-s + 3.18·19-s + 152.·22-s + 23.6·23-s + 119.·26-s − 23.9·28-s + 9.22·29-s − 80.2·31-s − 145.·32-s − 99.5·34-s + 61.1·37-s + 10.7·38-s + 282.·41-s + 58.8·43-s + 154.·44-s + 79.9·46-s − 371.·47-s + 49·49-s + 121.·52-s + ⋯
L(s)  = 1  + 1.19·2-s + 0.427·4-s − 0.377·7-s − 0.683·8-s + 1.23·11-s + 0.757·13-s − 0.451·14-s − 1.24·16-s − 0.420·17-s + 0.0384·19-s + 1.47·22-s + 0.214·23-s + 0.904·26-s − 0.161·28-s + 0.0590·29-s − 0.464·31-s − 0.803·32-s − 0.501·34-s + 0.271·37-s + 0.0460·38-s + 1.07·41-s + 0.208·43-s + 0.528·44-s + 0.256·46-s − 1.15·47-s + 0.142·49-s + 0.324·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.785641028\)
\(L(\frac12)\) \(\approx\) \(3.785641028\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 - 3.37T + 8T^{2} \)
11 \( 1 - 45.0T + 1.33e3T^{2} \)
13 \( 1 - 35.4T + 2.19e3T^{2} \)
17 \( 1 + 29.4T + 4.91e3T^{2} \)
19 \( 1 - 3.18T + 6.85e3T^{2} \)
23 \( 1 - 23.6T + 1.21e4T^{2} \)
29 \( 1 - 9.22T + 2.43e4T^{2} \)
31 \( 1 + 80.2T + 2.97e4T^{2} \)
37 \( 1 - 61.1T + 5.06e4T^{2} \)
41 \( 1 - 282.T + 6.89e4T^{2} \)
43 \( 1 - 58.8T + 7.95e4T^{2} \)
47 \( 1 + 371.T + 1.03e5T^{2} \)
53 \( 1 - 256.T + 1.48e5T^{2} \)
59 \( 1 - 571.T + 2.05e5T^{2} \)
61 \( 1 - 835.T + 2.26e5T^{2} \)
67 \( 1 + 933.T + 3.00e5T^{2} \)
71 \( 1 - 378.T + 3.57e5T^{2} \)
73 \( 1 - 494.T + 3.89e5T^{2} \)
79 \( 1 - 1.07e3T + 4.93e5T^{2} \)
83 \( 1 - 722.T + 5.71e5T^{2} \)
89 \( 1 - 89.5T + 7.04e5T^{2} \)
97 \( 1 - 101.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.092911380117645912768314239796, −8.385110344560360013366335733840, −7.08967933966741893851128102343, −6.40273606524592762780475405302, −5.79736154047941678764611552868, −4.80138525051682736105827981752, −3.93524044746933462939650295533, −3.41145282001411189093731570427, −2.20886859798885702902309204256, −0.792151043197346274876041187709, 0.792151043197346274876041187709, 2.20886859798885702902309204256, 3.41145282001411189093731570427, 3.93524044746933462939650295533, 4.80138525051682736105827981752, 5.79736154047941678764611552868, 6.40273606524592762780475405302, 7.08967933966741893851128102343, 8.385110344560360013366335733840, 9.092911380117645912768314239796

Graph of the $Z$-function along the critical line