L(s) = 1 | + 1.82·2-s − 4.65·4-s + 7·7-s − 23.1·8-s + 64.5·11-s + 32.3·13-s + 12.7·14-s − 5.05·16-s − 56.3·17-s − 2.74·19-s + 118.·22-s + 88.1·23-s + 59.1·26-s − 32.5·28-s − 246.·29-s − 110.·31-s + 175.·32-s − 103.·34-s − 120.·37-s − 5.01·38-s + 176.·41-s + 443.·43-s − 300.·44-s + 161.·46-s − 345.·47-s + 49·49-s − 150.·52-s + ⋯ |
L(s) = 1 | + 0.646·2-s − 0.582·4-s + 0.377·7-s − 1.02·8-s + 1.76·11-s + 0.690·13-s + 0.244·14-s − 0.0790·16-s − 0.803·17-s − 0.0331·19-s + 1.14·22-s + 0.799·23-s + 0.446·26-s − 0.220·28-s − 1.57·29-s − 0.642·31-s + 0.971·32-s − 0.519·34-s − 0.536·37-s − 0.0214·38-s + 0.671·41-s + 1.57·43-s − 1.03·44-s + 0.516·46-s − 1.07·47-s + 0.142·49-s − 0.401·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.764164022\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.764164022\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 - 1.82T + 8T^{2} \) |
| 11 | \( 1 - 64.5T + 1.33e3T^{2} \) |
| 13 | \( 1 - 32.3T + 2.19e3T^{2} \) |
| 17 | \( 1 + 56.3T + 4.91e3T^{2} \) |
| 19 | \( 1 + 2.74T + 6.85e3T^{2} \) |
| 23 | \( 1 - 88.1T + 1.21e4T^{2} \) |
| 29 | \( 1 + 246.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 110.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 120.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 176.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 443.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 345.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 260.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 628.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 115.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 951.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 356.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 656.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 440.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 54.4T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.01e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 724.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.148862085010711906584867969920, −8.484545641305012890080494909306, −7.34273971571518094750399983007, −6.43627307088392360868036088376, −5.76120235415806023984537743350, −4.77491454911165300070185180077, −3.99789702734946826772808536767, −3.41717496467596497901784353303, −1.91194494073805489290818219797, −0.75739553855367824648032229375,
0.75739553855367824648032229375, 1.91194494073805489290818219797, 3.41717496467596497901784353303, 3.99789702734946826772808536767, 4.77491454911165300070185180077, 5.76120235415806023984537743350, 6.43627307088392360868036088376, 7.34273971571518094750399983007, 8.484545641305012890080494909306, 9.148862085010711906584867969920