Properties

Label 2-1575-1.1-c3-0-24
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.75·2-s + 14.5·4-s + 7·7-s − 31.3·8-s − 7.31·11-s − 4.15·13-s − 33.2·14-s + 32.2·16-s − 53.5·17-s + 88.9·19-s + 34.7·22-s − 156.·23-s + 19.7·26-s + 102.·28-s − 42.2·29-s − 14.0·31-s + 97.4·32-s + 254.·34-s − 293.·37-s − 422.·38-s + 127.·41-s − 210.·43-s − 106.·44-s + 745.·46-s + 468.·47-s + 49·49-s − 60.6·52-s + ⋯
L(s)  = 1  − 1.68·2-s + 1.82·4-s + 0.377·7-s − 1.38·8-s − 0.200·11-s − 0.0886·13-s − 0.635·14-s + 0.504·16-s − 0.763·17-s + 1.07·19-s + 0.337·22-s − 1.42·23-s + 0.148·26-s + 0.689·28-s − 0.270·29-s − 0.0812·31-s + 0.538·32-s + 1.28·34-s − 1.30·37-s − 1.80·38-s + 0.484·41-s − 0.745·43-s − 0.365·44-s + 2.38·46-s + 1.45·47-s + 0.142·49-s − 0.161·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7008306216\)
\(L(\frac12)\) \(\approx\) \(0.7008306216\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 + 4.75T + 8T^{2} \)
11 \( 1 + 7.31T + 1.33e3T^{2} \)
13 \( 1 + 4.15T + 2.19e3T^{2} \)
17 \( 1 + 53.5T + 4.91e3T^{2} \)
19 \( 1 - 88.9T + 6.85e3T^{2} \)
23 \( 1 + 156.T + 1.21e4T^{2} \)
29 \( 1 + 42.2T + 2.43e4T^{2} \)
31 \( 1 + 14.0T + 2.97e4T^{2} \)
37 \( 1 + 293.T + 5.06e4T^{2} \)
41 \( 1 - 127.T + 6.89e4T^{2} \)
43 \( 1 + 210.T + 7.95e4T^{2} \)
47 \( 1 - 468.T + 1.03e5T^{2} \)
53 \( 1 + 115.T + 1.48e5T^{2} \)
59 \( 1 - 314.T + 2.05e5T^{2} \)
61 \( 1 - 768.T + 2.26e5T^{2} \)
67 \( 1 + 717.T + 3.00e5T^{2} \)
71 \( 1 - 737.T + 3.57e5T^{2} \)
73 \( 1 - 477.T + 3.89e5T^{2} \)
79 \( 1 + 279.T + 4.93e5T^{2} \)
83 \( 1 + 776.T + 5.71e5T^{2} \)
89 \( 1 - 29.7T + 7.04e5T^{2} \)
97 \( 1 + 231.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.970890811805694032396491088091, −8.413137318267117570905602137846, −7.61840104015083212704372299382, −7.06169990047794102396881656285, −6.08585292040275716448233716152, −5.06857525044980487288968828340, −3.83117405511955459300967708044, −2.48448647528250359621338834028, −1.67090541981498614793239259294, −0.52495703997550388500132063913, 0.52495703997550388500132063913, 1.67090541981498614793239259294, 2.48448647528250359621338834028, 3.83117405511955459300967708044, 5.06857525044980487288968828340, 6.08585292040275716448233716152, 7.06169990047794102396881656285, 7.61840104015083212704372299382, 8.413137318267117570905602137846, 8.970890811805694032396491088091

Graph of the $Z$-function along the critical line