Properties

Label 2-1575-1.1-c3-0-2
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.229·2-s − 7.94·4-s − 7·7-s + 3.66·8-s − 51.0·11-s − 46.0·13-s + 1.60·14-s + 62.7·16-s − 72.7·17-s − 123.·19-s + 11.7·22-s − 156.·23-s + 10.5·26-s + 55.6·28-s + 191.·29-s − 116.·31-s − 43.7·32-s + 16.7·34-s − 83.1·37-s + 28.4·38-s + 466.·41-s − 422.·43-s + 405.·44-s + 35.8·46-s − 268.·47-s + 49·49-s + 366.·52-s + ⋯
L(s)  = 1  − 0.0812·2-s − 0.993·4-s − 0.377·7-s + 0.161·8-s − 1.39·11-s − 0.983·13-s + 0.0307·14-s + 0.980·16-s − 1.03·17-s − 1.49·19-s + 0.113·22-s − 1.41·23-s + 0.0798·26-s + 0.375·28-s + 1.22·29-s − 0.673·31-s − 0.241·32-s + 0.0843·34-s − 0.369·37-s + 0.121·38-s + 1.77·41-s − 1.49·43-s + 1.38·44-s + 0.114·46-s − 0.833·47-s + 0.142·49-s + 0.976·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1058441479\)
\(L(\frac12)\) \(\approx\) \(0.1058441479\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 + 0.229T + 8T^{2} \)
11 \( 1 + 51.0T + 1.33e3T^{2} \)
13 \( 1 + 46.0T + 2.19e3T^{2} \)
17 \( 1 + 72.7T + 4.91e3T^{2} \)
19 \( 1 + 123.T + 6.85e3T^{2} \)
23 \( 1 + 156.T + 1.21e4T^{2} \)
29 \( 1 - 191.T + 2.43e4T^{2} \)
31 \( 1 + 116.T + 2.97e4T^{2} \)
37 \( 1 + 83.1T + 5.06e4T^{2} \)
41 \( 1 - 466.T + 6.89e4T^{2} \)
43 \( 1 + 422.T + 7.95e4T^{2} \)
47 \( 1 + 268.T + 1.03e5T^{2} \)
53 \( 1 + 310.T + 1.48e5T^{2} \)
59 \( 1 + 709.T + 2.05e5T^{2} \)
61 \( 1 - 402.T + 2.26e5T^{2} \)
67 \( 1 - 114.T + 3.00e5T^{2} \)
71 \( 1 - 214.T + 3.57e5T^{2} \)
73 \( 1 + 402.T + 3.89e5T^{2} \)
79 \( 1 + 1.37e3T + 4.93e5T^{2} \)
83 \( 1 + 1.15e3T + 5.71e5T^{2} \)
89 \( 1 - 366.T + 7.04e5T^{2} \)
97 \( 1 - 1.06e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.002596179961646441774252652317, −8.303905380052380792863022501239, −7.68506390669204523716988045830, −6.60813552779326735178700689532, −5.71715160018101302709567071351, −4.75564771135651540192230181363, −4.24380110704325178450854776295, −2.95952022499671244712120702695, −2.00204214870745338140172871729, −0.15033813342853076249297006314, 0.15033813342853076249297006314, 2.00204214870745338140172871729, 2.95952022499671244712120702695, 4.24380110704325178450854776295, 4.75564771135651540192230181363, 5.71715160018101302709567071351, 6.60813552779326735178700689532, 7.68506390669204523716988045830, 8.303905380052380792863022501239, 9.002596179961646441774252652317

Graph of the $Z$-function along the critical line