Properties

Label 2-1575-1.1-c3-0-120
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.67·2-s − 5.19·4-s + 7·7-s − 22.1·8-s + 57.5·11-s − 45.5·13-s + 11.7·14-s + 4.52·16-s − 92.0·17-s + 125.·19-s + 96.4·22-s − 158.·23-s − 76.2·26-s − 36.3·28-s + 40.1·29-s + 49.5·31-s + 184.·32-s − 154.·34-s + 231.·37-s + 209.·38-s − 169.·41-s − 147.·43-s − 299.·44-s − 265.·46-s + 67.0·47-s + 49·49-s + 236.·52-s + ⋯
L(s)  = 1  + 0.592·2-s − 0.649·4-s + 0.377·7-s − 0.976·8-s + 1.57·11-s − 0.971·13-s + 0.223·14-s + 0.0707·16-s − 1.31·17-s + 1.51·19-s + 0.934·22-s − 1.43·23-s − 0.575·26-s − 0.245·28-s + 0.257·29-s + 0.287·31-s + 1.01·32-s − 0.777·34-s + 1.02·37-s + 0.895·38-s − 0.645·41-s − 0.522·43-s − 1.02·44-s − 0.851·46-s + 0.208·47-s + 0.142·49-s + 0.630·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 1.67T + 8T^{2} \)
11 \( 1 - 57.5T + 1.33e3T^{2} \)
13 \( 1 + 45.5T + 2.19e3T^{2} \)
17 \( 1 + 92.0T + 4.91e3T^{2} \)
19 \( 1 - 125.T + 6.85e3T^{2} \)
23 \( 1 + 158.T + 1.21e4T^{2} \)
29 \( 1 - 40.1T + 2.43e4T^{2} \)
31 \( 1 - 49.5T + 2.97e4T^{2} \)
37 \( 1 - 231.T + 5.06e4T^{2} \)
41 \( 1 + 169.T + 6.89e4T^{2} \)
43 \( 1 + 147.T + 7.95e4T^{2} \)
47 \( 1 - 67.0T + 1.03e5T^{2} \)
53 \( 1 + 268.T + 1.48e5T^{2} \)
59 \( 1 - 240.T + 2.05e5T^{2} \)
61 \( 1 - 90.4T + 2.26e5T^{2} \)
67 \( 1 + 406.T + 3.00e5T^{2} \)
71 \( 1 + 330.T + 3.57e5T^{2} \)
73 \( 1 - 546.T + 3.89e5T^{2} \)
79 \( 1 + 25.3T + 4.93e5T^{2} \)
83 \( 1 + 376.T + 5.71e5T^{2} \)
89 \( 1 + 1.02e3T + 7.04e5T^{2} \)
97 \( 1 + 942.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.745902683300732360405317097746, −7.923670885801050249561884873877, −6.89499438734062235394478706842, −6.13838204521935852035002906342, −5.18965847949627714622762268655, −4.41089372216940190857845530319, −3.80028862146580168857609324720, −2.63250899334183724154450632896, −1.32989529005646332941396228847, 0, 1.32989529005646332941396228847, 2.63250899334183724154450632896, 3.80028862146580168857609324720, 4.41089372216940190857845530319, 5.18965847949627714622762268655, 6.13838204521935852035002906342, 6.89499438734062235394478706842, 7.923670885801050249561884873877, 8.745902683300732360405317097746

Graph of the $Z$-function along the critical line