L(s) = 1 | + 1.19·2-s − 6.56·4-s − 7·7-s − 17.4·8-s − 4.52·11-s + 14.5·13-s − 8.37·14-s + 31.7·16-s − 15.5·17-s − 14.8·19-s − 5.41·22-s + 166.·23-s + 17.4·26-s + 45.9·28-s + 194.·29-s + 104.·31-s + 177.·32-s − 18.6·34-s − 47.5·37-s − 17.7·38-s − 378.·41-s + 194.·43-s + 29.7·44-s + 199.·46-s − 488.·47-s + 49·49-s − 95.7·52-s + ⋯ |
L(s) = 1 | + 0.422·2-s − 0.821·4-s − 0.377·7-s − 0.770·8-s − 0.124·11-s + 0.310·13-s − 0.159·14-s + 0.495·16-s − 0.221·17-s − 0.179·19-s − 0.0524·22-s + 1.51·23-s + 0.131·26-s + 0.310·28-s + 1.24·29-s + 0.605·31-s + 0.979·32-s − 0.0938·34-s − 0.211·37-s − 0.0758·38-s − 1.44·41-s + 0.691·43-s + 0.101·44-s + 0.639·46-s − 1.51·47-s + 0.142·49-s − 0.255·52-s + ⋯ |
Λ(s)=(=(1575s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1575s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−1.19T+8T2 |
| 11 | 1+4.52T+1.33e3T2 |
| 13 | 1−14.5T+2.19e3T2 |
| 17 | 1+15.5T+4.91e3T2 |
| 19 | 1+14.8T+6.85e3T2 |
| 23 | 1−166.T+1.21e4T2 |
| 29 | 1−194.T+2.43e4T2 |
| 31 | 1−104.T+2.97e4T2 |
| 37 | 1+47.5T+5.06e4T2 |
| 41 | 1+378.T+6.89e4T2 |
| 43 | 1−194.T+7.95e4T2 |
| 47 | 1+488.T+1.03e5T2 |
| 53 | 1+316.T+1.48e5T2 |
| 59 | 1+350.T+2.05e5T2 |
| 61 | 1−115.T+2.26e5T2 |
| 67 | 1+434.T+3.00e5T2 |
| 71 | 1−410.T+3.57e5T2 |
| 73 | 1−464.T+3.89e5T2 |
| 79 | 1+290.T+4.93e5T2 |
| 83 | 1+578.T+5.71e5T2 |
| 89 | 1−937.T+7.04e5T2 |
| 97 | 1+839.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.687496907191919963543619272677, −8.054031040373261777762029274148, −6.84737695098697817801058802849, −6.20642830598497974048347734189, −5.14334382571885853409104576655, −4.59197763588451983805407658445, −3.52074950236082126130273708813, −2.79404003475741885108642862281, −1.18601180477300205568132783563, 0,
1.18601180477300205568132783563, 2.79404003475741885108642862281, 3.52074950236082126130273708813, 4.59197763588451983805407658445, 5.14334382571885853409104576655, 6.20642830598497974048347734189, 6.84737695098697817801058802849, 8.054031040373261777762029274148, 8.687496907191919963543619272677