Properties

Label 2-1575-1.1-c3-0-107
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.38·2-s + 20.9·4-s − 7·7-s + 69.8·8-s + 15.8·11-s + 40.8·13-s − 37.6·14-s + 208.·16-s − 47.2·17-s + 141.·19-s + 85.5·22-s + 97.3·23-s + 219.·26-s − 146.·28-s − 236.·29-s + 95.7·31-s + 562.·32-s − 254.·34-s − 33.8·37-s + 759.·38-s − 197.·41-s − 437.·43-s + 333.·44-s + 523.·46-s + 256.·47-s + 49·49-s + 857.·52-s + ⋯
L(s)  = 1  + 1.90·2-s + 2.62·4-s − 0.377·7-s + 3.08·8-s + 0.435·11-s + 0.871·13-s − 0.719·14-s + 3.25·16-s − 0.674·17-s + 1.70·19-s + 0.828·22-s + 0.882·23-s + 1.65·26-s − 0.991·28-s − 1.51·29-s + 0.555·31-s + 3.10·32-s − 1.28·34-s − 0.150·37-s + 3.24·38-s − 0.751·41-s − 1.55·43-s + 1.14·44-s + 1.67·46-s + 0.796·47-s + 0.142·49-s + 2.28·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(8.886723156\)
\(L(\frac12)\) \(\approx\) \(8.886723156\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 - 5.38T + 8T^{2} \)
11 \( 1 - 15.8T + 1.33e3T^{2} \)
13 \( 1 - 40.8T + 2.19e3T^{2} \)
17 \( 1 + 47.2T + 4.91e3T^{2} \)
19 \( 1 - 141.T + 6.85e3T^{2} \)
23 \( 1 - 97.3T + 1.21e4T^{2} \)
29 \( 1 + 236.T + 2.43e4T^{2} \)
31 \( 1 - 95.7T + 2.97e4T^{2} \)
37 \( 1 + 33.8T + 5.06e4T^{2} \)
41 \( 1 + 197.T + 6.89e4T^{2} \)
43 \( 1 + 437.T + 7.95e4T^{2} \)
47 \( 1 - 256.T + 1.03e5T^{2} \)
53 \( 1 + 64.7T + 1.48e5T^{2} \)
59 \( 1 - 809.T + 2.05e5T^{2} \)
61 \( 1 - 318.T + 2.26e5T^{2} \)
67 \( 1 - 726.T + 3.00e5T^{2} \)
71 \( 1 - 68.6T + 3.57e5T^{2} \)
73 \( 1 - 680.T + 3.89e5T^{2} \)
79 \( 1 - 1.16e3T + 4.93e5T^{2} \)
83 \( 1 + 642.T + 5.71e5T^{2} \)
89 \( 1 - 1.38e3T + 7.04e5T^{2} \)
97 \( 1 - 317.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.109507087618428990309508211530, −7.950148855167651331101153224910, −6.93672855782459283436468769434, −6.56282210444345660115698833718, −5.51599942164465942862723171174, −5.03774825413436448632876541476, −3.80876620511970067230560663887, −3.44560782723937798265043854504, −2.34005566229234304097251827457, −1.18148071168082199611342748806, 1.18148071168082199611342748806, 2.34005566229234304097251827457, 3.44560782723937798265043854504, 3.80876620511970067230560663887, 5.03774825413436448632876541476, 5.51599942164465942862723171174, 6.56282210444345660115698833718, 6.93672855782459283436468769434, 7.950148855167651331101153224910, 9.109507087618428990309508211530

Graph of the $Z$-function along the critical line