Properties

Label 2-1575-1.1-c3-0-10
Degree $2$
Conductor $1575$
Sign $1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.23·2-s + 9.94·4-s + 7·7-s − 8.23·8-s + 41.5·11-s − 88.9·13-s − 29.6·14-s − 44.6·16-s − 120.·17-s − 112.·19-s − 175.·22-s − 115.·23-s + 376.·26-s + 69.6·28-s + 144.·29-s − 258.·31-s + 255.·32-s + 509.·34-s − 48.3·37-s + 475.·38-s − 200.·41-s + 218.·43-s + 412.·44-s + 488.·46-s + 575.·47-s + 49·49-s − 884.·52-s + ⋯
L(s)  = 1  − 1.49·2-s + 1.24·4-s + 0.377·7-s − 0.363·8-s + 1.13·11-s − 1.89·13-s − 0.566·14-s − 0.697·16-s − 1.71·17-s − 1.35·19-s − 1.70·22-s − 1.04·23-s + 2.84·26-s + 0.469·28-s + 0.927·29-s − 1.49·31-s + 1.40·32-s + 2.57·34-s − 0.214·37-s + 2.02·38-s − 0.765·41-s + 0.773·43-s + 1.41·44-s + 1.56·46-s + 1.78·47-s + 0.142·49-s − 2.35·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4487863243\)
\(L(\frac12)\) \(\approx\) \(0.4487863243\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 + 4.23T + 8T^{2} \)
11 \( 1 - 41.5T + 1.33e3T^{2} \)
13 \( 1 + 88.9T + 2.19e3T^{2} \)
17 \( 1 + 120.T + 4.91e3T^{2} \)
19 \( 1 + 112.T + 6.85e3T^{2} \)
23 \( 1 + 115.T + 1.21e4T^{2} \)
29 \( 1 - 144.T + 2.43e4T^{2} \)
31 \( 1 + 258.T + 2.97e4T^{2} \)
37 \( 1 + 48.3T + 5.06e4T^{2} \)
41 \( 1 + 200.T + 6.89e4T^{2} \)
43 \( 1 - 218.T + 7.95e4T^{2} \)
47 \( 1 - 575.T + 1.03e5T^{2} \)
53 \( 1 + 184.T + 1.48e5T^{2} \)
59 \( 1 - 151.T + 2.05e5T^{2} \)
61 \( 1 + 529.T + 2.26e5T^{2} \)
67 \( 1 + 1.28T + 3.00e5T^{2} \)
71 \( 1 - 61.4T + 3.57e5T^{2} \)
73 \( 1 + 484.T + 3.89e5T^{2} \)
79 \( 1 - 878.T + 4.93e5T^{2} \)
83 \( 1 - 491.T + 5.71e5T^{2} \)
89 \( 1 - 415.T + 7.04e5T^{2} \)
97 \( 1 - 1.03e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.031090576641441373614635692617, −8.514297371156935355032439595201, −7.54579351967256139237609065868, −6.95784187454072987476040509442, −6.20913155857813730264677779498, −4.76087308741234609122526767407, −4.13148405319743605170495231426, −2.34652686206042097081089699799, −1.85504130551169329715287371316, −0.39219303726823274276798959071, 0.39219303726823274276798959071, 1.85504130551169329715287371316, 2.34652686206042097081089699799, 4.13148405319743605170495231426, 4.76087308741234609122526767407, 6.20913155857813730264677779498, 6.95784187454072987476040509442, 7.54579351967256139237609065868, 8.514297371156935355032439595201, 9.031090576641441373614635692617

Graph of the $Z$-function along the critical line