L(s) = 1 | − 2·3-s + 5-s + 9-s − 3·11-s − 13-s − 2·15-s + 6·17-s − 19-s + 9·23-s + 25-s + 4·27-s − 6·29-s − 8·31-s + 6·33-s + 7·37-s + 2·39-s − 3·41-s − 2·43-s + 45-s − 9·47-s − 12·51-s − 9·53-s − 3·55-s + 2·57-s + 8·61-s − 65-s − 8·67-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.447·5-s + 1/3·9-s − 0.904·11-s − 0.277·13-s − 0.516·15-s + 1.45·17-s − 0.229·19-s + 1.87·23-s + 1/5·25-s + 0.769·27-s − 1.11·29-s − 1.43·31-s + 1.04·33-s + 1.15·37-s + 0.320·39-s − 0.468·41-s − 0.304·43-s + 0.149·45-s − 1.31·47-s − 1.68·51-s − 1.23·53-s − 0.404·55-s + 0.264·57-s + 1.02·61-s − 0.124·65-s − 0.977·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + 3 T + p T^{2} \) |
| 13 | \( 1 + T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 23 | \( 1 - 9 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 7 T + p T^{2} \) |
| 41 | \( 1 + 3 T + p T^{2} \) |
| 43 | \( 1 + 2 T + p T^{2} \) |
| 47 | \( 1 + 9 T + p T^{2} \) |
| 53 | \( 1 + 9 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 8 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 + 10 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.47661748907868, −15.91380893327615, −15.07123910644505, −14.66590558812905, −14.18540564702629, −13.15949368944519, −12.89053464905921, −12.52638663250220, −11.53011513000875, −11.33176472600285, −10.68921107269811, −10.15443569281819, −9.591939736400483, −8.943666034976095, −8.156272596479345, −7.438612726626965, −6.998474577323323, −6.096676060313861, −5.686139255906629, −5.078583012879917, −4.739215163608480, −3.468009740023631, −2.939341324981207, −1.894319887200019, −0.9807938942043003, 0,
0.9807938942043003, 1.894319887200019, 2.939341324981207, 3.468009740023631, 4.739215163608480, 5.078583012879917, 5.686139255906629, 6.096676060313861, 6.998474577323323, 7.438612726626965, 8.156272596479345, 8.943666034976095, 9.591939736400483, 10.15443569281819, 10.68921107269811, 11.33176472600285, 11.53011513000875, 12.52638663250220, 12.89053464905921, 13.15949368944519, 14.18540564702629, 14.66590558812905, 15.07123910644505, 15.91380893327615, 16.47661748907868