Properties

Label 2-15680-1.1-c1-0-27
Degree $2$
Conductor $15680$
Sign $1$
Analytic cond. $125.205$
Root an. cond. $11.1895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 2·9-s − 5·11-s + 5·13-s + 15-s + 5·17-s + 8·23-s + 25-s − 5·27-s + 29-s − 2·31-s − 5·33-s − 4·37-s + 5·39-s − 2·41-s − 4·43-s − 2·45-s − 13·47-s + 5·51-s + 8·53-s − 5·55-s + 4·59-s − 2·61-s + 5·65-s + 8·67-s + 8·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 2/3·9-s − 1.50·11-s + 1.38·13-s + 0.258·15-s + 1.21·17-s + 1.66·23-s + 1/5·25-s − 0.962·27-s + 0.185·29-s − 0.359·31-s − 0.870·33-s − 0.657·37-s + 0.800·39-s − 0.312·41-s − 0.609·43-s − 0.298·45-s − 1.89·47-s + 0.700·51-s + 1.09·53-s − 0.674·55-s + 0.520·59-s − 0.256·61-s + 0.620·65-s + 0.977·67-s + 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15680\)    =    \(2^{6} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.205\)
Root analytic conductor: \(11.1895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{15680} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 15680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.742266210\)
\(L(\frac12)\) \(\approx\) \(2.742266210\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good3 \( 1 - T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 13 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 11 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 - 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.11888158009216, −15.25949679665744, −14.92857892968620, −14.33858150529363, −13.65936215215326, −13.27047840955024, −12.95107742162466, −12.10277630000957, −11.39854439388291, −10.86312718594222, −10.35432724186378, −9.764064358785734, −8.983631518284694, −8.568799278199317, −8.015303184853982, −7.468372628239670, −6.613344249478544, −5.958036313646995, −5.230475579599218, −4.989202418176694, −3.549080842226415, −3.303634815607494, −2.549854795366001, −1.698651711671920, −0.6951731787083527, 0.6951731787083527, 1.698651711671920, 2.549854795366001, 3.303634815607494, 3.549080842226415, 4.989202418176694, 5.230475579599218, 5.958036313646995, 6.613344249478544, 7.468372628239670, 8.015303184853982, 8.568799278199317, 8.983631518284694, 9.764064358785734, 10.35432724186378, 10.86312718594222, 11.39854439388291, 12.10277630000957, 12.95107742162466, 13.27047840955024, 13.65936215215326, 14.33858150529363, 14.92857892968620, 15.25949679665744, 16.11888158009216

Graph of the $Z$-function along the critical line