L(s) = 1 | + (−0.618 + 1.07i)3-s + (−1.61 − 2.80i)5-s + (0.736 + 1.27i)9-s + (3.23 − 5.60i)11-s + 0.763·13-s + 4·15-s + (−2.23 + 3.87i)17-s + (0.618 + 1.07i)19-s + (−2 − 3.46i)23-s + (−2.73 + 4.73i)25-s − 5.52·27-s − 4.47·29-s + (1.23 − 2.14i)31-s + (3.99 + 6.92i)33-s + (2.23 + 3.87i)37-s + ⋯ |
L(s) = 1 | + (−0.356 + 0.618i)3-s + (−0.723 − 1.25i)5-s + (0.245 + 0.424i)9-s + (0.975 − 1.68i)11-s + 0.211·13-s + 1.03·15-s + (−0.542 + 0.939i)17-s + (0.141 + 0.245i)19-s + (−0.417 − 0.722i)23-s + (−0.547 + 0.947i)25-s − 1.06·27-s − 0.830·29-s + (0.222 − 0.384i)31-s + (0.696 + 1.20i)33-s + (0.367 + 0.636i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8525902898\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8525902898\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.618 - 1.07i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.61 + 2.80i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.23 + 5.60i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 0.763T + 13T^{2} \) |
| 17 | \( 1 + (2.23 - 3.87i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.618 - 1.07i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2 + 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.47T + 29T^{2} \) |
| 31 | \( 1 + (-1.23 + 2.14i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.23 - 3.87i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.47T + 41T^{2} \) |
| 43 | \( 1 - 6.47T + 43T^{2} \) |
| 47 | \( 1 + (5.23 + 9.06i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5 + 8.66i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.61 + 7.99i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.61 + 9.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.94T + 71T^{2} \) |
| 73 | \( 1 + (-1.47 + 2.54i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.47 + 11.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.23T + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 12.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.999778912438799180014019300453, −8.452840322309361131379856582175, −7.940440394796006830922381207770, −6.58073372645822217537051123570, −5.77691905411610541340483041319, −4.94107167724214805076295959782, −4.08446188428997963549101603103, −3.56913284623922601239430305720, −1.68243890793245558774064155403, −0.36759290674107369404878430666,
1.44409773218803673747352396315, 2.64483622295355450505381806943, 3.79698702164160326785658745577, 4.47663708869368072595324037714, 5.86523092570553318608334144575, 6.75636152287216025516398345189, 7.21657162893771429831772512587, 7.57982679582956193147689375080, 9.050218095170145378787393549276, 9.648855976807499816326351007524