L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.866 − 0.5i)3-s + 1.00i·4-s + (−0.258 − 0.965i)5-s + (−0.258 − 0.965i)6-s + (1.22 − 1.22i)7-s + (−0.707 + 0.707i)8-s + (0.499 + 0.866i)9-s + (0.500 − 0.866i)10-s + (0.500 − 0.866i)12-s + (−0.707 − 0.707i)13-s + 1.73·14-s + (−0.258 + 0.965i)15-s − 1.00·16-s + (−1.36 − 1.36i)17-s + (−0.258 + 0.965i)18-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.866 − 0.5i)3-s + 1.00i·4-s + (−0.258 − 0.965i)5-s + (−0.258 − 0.965i)6-s + (1.22 − 1.22i)7-s + (−0.707 + 0.707i)8-s + (0.499 + 0.866i)9-s + (0.500 − 0.866i)10-s + (0.500 − 0.866i)12-s + (−0.707 − 0.707i)13-s + 1.73·14-s + (−0.258 + 0.965i)15-s − 1.00·16-s + (−1.36 − 1.36i)17-s + (−0.258 + 0.965i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.685 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.685 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.140217423\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.140217423\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 + (0.258 + 0.965i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.41T + T^{2} \) |
| 37 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.366 - 0.366i)T + iT^{2} \) |
| 47 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + 0.517iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.364815841086957912628558635686, −8.314556452744008367734654645003, −7.60600162163972280547137687858, −7.28642640653104477948301175283, −6.23756552033752855723495622049, −5.18124366455955885645827362450, −4.68979807798082595042259208994, −4.21432048484751091431671937956, −2.41747935738695895975403415020, −0.818764280093134494819643148354,
1.84788648320551084877770687139, 2.67118278825930282832738669370, 4.08692000073974714415887233105, 4.57533163963414457833291348774, 5.52783051456787667181595609865, 6.25165678473868478492210084838, 6.93670640867839981130236480136, 8.307450834133460277225171121628, 9.150749646202110090100068865579, 10.07471353635760735842535625445