Properties

Label 2-1560-1560.1109-c0-0-3
Degree $2$
Conductor $1560$
Sign $0.872 + 0.488i$
Analytic cond. $0.778541$
Root an. cond. $0.882349$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s i·5-s + (0.866 − 0.499i)6-s + 0.999i·8-s + (−0.499 − 0.866i)9-s + (0.5 − 0.866i)10-s + (−0.866 − 0.5i)11-s + 0.999·12-s + 13-s + (−0.866 − 0.5i)15-s + (−0.5 + 0.866i)16-s − 0.999i·18-s + (0.866 − 0.499i)20-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s i·5-s + (0.866 − 0.499i)6-s + 0.999i·8-s + (−0.499 − 0.866i)9-s + (0.5 − 0.866i)10-s + (−0.866 − 0.5i)11-s + 0.999·12-s + 13-s + (−0.866 − 0.5i)15-s + (−0.5 + 0.866i)16-s − 0.999i·18-s + (0.866 − 0.499i)20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1560\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 13\)
Sign: $0.872 + 0.488i$
Analytic conductor: \(0.778541\)
Root analytic conductor: \(0.882349\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1560} (1109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1560,\ (\ :0),\ 0.872 + 0.488i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.059845700\)
\(L(\frac12)\) \(\approx\) \(2.059845700\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 + (-0.5 + 0.866i)T \)
5 \( 1 + iT \)
13 \( 1 - T \)
good7 \( 1 + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
17 \( 1 + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (-0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \)
31 \( 1 - 1.73iT - T^{2} \)
37 \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \)
41 \( 1 + (-0.5 - 0.866i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
47 \( 1 - iT - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 - 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 + (-0.5 + 0.866i)T^{2} \)
73 \( 1 + T^{2} \)
79 \( 1 + T + T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + (-0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.964281422071023221027159244050, −8.629740357635297811490702453536, −7.981649550827213231055438448840, −7.09571907216870890942660305614, −6.30147937369691704182802415681, −5.49130417752778000527620131425, −4.70240415410724919191751222982, −3.53948554509852849544682552848, −2.72075417532501447626349524381, −1.36611514249903159304354701171, 2.06690223925445867820585087038, 2.87438392119721906576580221641, 3.72485575481078228146443938005, 4.40163434110818350839373503107, 5.57842945439289366493766661320, 6.06959555173148651715270340916, 7.38206524854918235867297610834, 7.909092766835187813818465545864, 9.381746402308461814223184871267, 9.753141025373196879606336122098

Graph of the $Z$-function along the critical line