Properties

Label 2-1560-1.1-c1-0-4
Degree $2$
Conductor $1560$
Sign $1$
Analytic cond. $12.4566$
Root an. cond. $3.52939$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2.70·7-s + 9-s + 0.701·11-s − 13-s + 15-s − 0.701·17-s − 2·19-s − 2.70·21-s + 6.70·23-s + 25-s − 27-s + 9.40·29-s − 9.40·31-s − 0.701·33-s − 2.70·35-s − 6.70·37-s + 39-s + 10.7·41-s + 4·43-s − 45-s − 1.40·47-s + 0.298·49-s + 0.701·51-s + 10.7·53-s − 0.701·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.02·7-s + 0.333·9-s + 0.211·11-s − 0.277·13-s + 0.258·15-s − 0.170·17-s − 0.458·19-s − 0.589·21-s + 1.39·23-s + 0.200·25-s − 0.192·27-s + 1.74·29-s − 1.68·31-s − 0.122·33-s − 0.456·35-s − 1.10·37-s + 0.160·39-s + 1.67·41-s + 0.609·43-s − 0.149·45-s − 0.204·47-s + 0.0426·49-s + 0.0982·51-s + 1.46·53-s − 0.0945·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1560\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(12.4566\)
Root analytic conductor: \(3.52939\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.425110405\)
\(L(\frac12)\) \(\approx\) \(1.425110405\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 - 2.70T + 7T^{2} \)
11 \( 1 - 0.701T + 11T^{2} \)
17 \( 1 + 0.701T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 - 6.70T + 23T^{2} \)
29 \( 1 - 9.40T + 29T^{2} \)
31 \( 1 + 9.40T + 31T^{2} \)
37 \( 1 + 6.70T + 37T^{2} \)
41 \( 1 - 10.7T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 1.40T + 47T^{2} \)
53 \( 1 - 10.7T + 53T^{2} \)
59 \( 1 + 14.8T + 59T^{2} \)
61 \( 1 - 2.70T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 15.5T + 71T^{2} \)
73 \( 1 - 13.4T + 73T^{2} \)
79 \( 1 - 4.70T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 8.10T + 89T^{2} \)
97 \( 1 - 18.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.307358576304214997750921444045, −8.666376700763651782389743663831, −7.74419814236012157091093863671, −7.09378670714638701836806674232, −6.20554913163162826846281664299, −5.10559675455828148694822898327, −4.63630331963000520860375565331, −3.56362766920041246015856934915, −2.19599287041094763525578487798, −0.894035209469996076943091148765, 0.894035209469996076943091148765, 2.19599287041094763525578487798, 3.56362766920041246015856934915, 4.63630331963000520860375565331, 5.10559675455828148694822898327, 6.20554913163162826846281664299, 7.09378670714638701836806674232, 7.74419814236012157091093863671, 8.666376700763651782389743663831, 9.307358576304214997750921444045

Graph of the $Z$-function along the critical line