Properties

Label 2-1560-1.1-c1-0-17
Degree $2$
Conductor $1560$
Sign $-1$
Analytic cond. $12.4566$
Root an. cond. $3.52939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s + 13-s + 15-s − 6·17-s + 4·19-s + 25-s − 27-s − 2·29-s − 2·37-s − 39-s − 2·41-s − 4·43-s − 45-s + 4·47-s − 7·49-s + 6·51-s − 10·53-s − 4·57-s + 8·59-s − 2·61-s − 65-s − 4·67-s − 12·71-s − 6·73-s − 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s + 0.277·13-s + 0.258·15-s − 1.45·17-s + 0.917·19-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.328·37-s − 0.160·39-s − 0.312·41-s − 0.609·43-s − 0.149·45-s + 0.583·47-s − 49-s + 0.840·51-s − 1.37·53-s − 0.529·57-s + 1.04·59-s − 0.256·61-s − 0.124·65-s − 0.488·67-s − 1.42·71-s − 0.702·73-s − 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1560\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(12.4566\)
Root analytic conductor: \(3.52939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.029699286650580252378019897933, −8.255839595509746587661110158170, −7.30852958358231687995174425393, −6.66362668717235019653588903201, −5.75689880403616193455214552068, −4.84582010444282036922244924984, −4.05595867364853291162003882996, −2.96519757453610398171302719263, −1.55679555007052089516178041435, 0, 1.55679555007052089516178041435, 2.96519757453610398171302719263, 4.05595867364853291162003882996, 4.84582010444282036922244924984, 5.75689880403616193455214552068, 6.66362668717235019653588903201, 7.30852958358231687995174425393, 8.255839595509746587661110158170, 9.029699286650580252378019897933

Graph of the $Z$-function along the critical line