L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s + (−0.5 − 0.866i)13-s + (−1 − 1.73i)19-s − 0.999·21-s + 25-s + 0.999·27-s − 31-s + (−1 + 1.73i)37-s + 0.999·39-s + (0.5 + 0.866i)43-s + 1.99·57-s + (0.5 + 0.866i)61-s + (0.499 − 0.866i)63-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (0.5 + 0.866i)7-s + (−0.499 − 0.866i)9-s + (−0.5 − 0.866i)13-s + (−1 − 1.73i)19-s − 0.999·21-s + 25-s + 0.999·27-s − 31-s + (−1 + 1.73i)37-s + 0.999·39-s + (0.5 + 0.866i)43-s + 1.99·57-s + (0.5 + 0.866i)61-s + (0.499 − 0.866i)63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5748867328\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5748867328\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 - T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.13712256832366131695424890221, −12.16223898308493711616487105926, −11.21618870351214128473596623863, −10.42865324778073088288378406500, −9.223432634792648971063271686512, −8.426320178916794271269645742399, −6.78205128267635501739595218871, −5.45461149728077424722847653941, −4.64419865390129387614011547920, −2.86001860257039679398210868800,
1.85492671042857562741002517517, 4.12196296708099721647063286021, 5.53519951937327730915506033297, 6.82635072436709119164717233769, 7.61222166988859049414115298574, 8.761415698778100303896616633042, 10.34906402372767019976987561544, 11.07231596751651044830586872506, 12.19828706702413409649508990299, 12.87467162212949865026756229537