| L(s) = 1 | + (0.5 − 0.866i)3-s + 1.73i·5-s + (3 − 1.73i)7-s + (−0.499 − 0.866i)9-s + (3 + 1.73i)11-s + (−2.5 − 2.59i)13-s + (1.49 + 0.866i)15-s + (−1.5 − 2.59i)17-s + (−3 + 1.73i)19-s − 3.46i·21-s + (−3 + 5.19i)23-s + 2.00·25-s − 0.999·27-s + (−4.5 + 7.79i)29-s + (3 − 1.73i)33-s + ⋯ |
| L(s) = 1 | + (0.288 − 0.499i)3-s + 0.774i·5-s + (1.13 − 0.654i)7-s + (−0.166 − 0.288i)9-s + (0.904 + 0.522i)11-s + (−0.693 − 0.720i)13-s + (0.387 + 0.223i)15-s + (−0.363 − 0.630i)17-s + (−0.688 + 0.397i)19-s − 0.755i·21-s + (−0.625 + 1.08i)23-s + 0.400·25-s − 0.192·27-s + (−0.835 + 1.44i)29-s + (0.522 − 0.301i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.29705 - 0.174992i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.29705 - 0.174992i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (2.5 + 2.59i)T \) |
| good | 5 | \( 1 - 1.73iT - 5T^{2} \) |
| 7 | \( 1 + (-3 + 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3 - 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (4.5 + 2.59i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (7.5 + 4.33i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1 + 1.73i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.46iT - 47T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (-12 + 6.92i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.5 - 9.52i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9 - 5.19i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-9 + 5.19i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.19iT - 73T^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 - 3.46iT - 83T^{2} \) |
| 89 | \( 1 + (6 + 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6 + 3.46i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.91720984623017817836612683453, −11.84788915870168825750305157953, −10.96526636825649627149395754262, −9.962720711660750300781971406164, −8.623581491597419451792796482663, −7.44773090777286749523056087306, −6.86948085074299929749018448082, −5.16726744818237835871522606195, −3.64827924370899148887378178731, −1.87434699414572112069597478785,
2.04421677189285670853746386208, 4.16420577549207164277272409888, 5.02783433508979592011012781687, 6.45984664369464484242152134746, 8.249799728223798369499347931976, 8.711229340482488262986780144509, 9.761667962638959940247021542591, 11.15827558278724835044081022692, 11.86023146607430678276249578473, 12.92969730931887237355674837410