L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.207 − 0.358i)3-s + (−0.499 − 0.866i)4-s + (1.70 − 2.95i)5-s + 0.414·6-s + (−2.62 − 0.358i)7-s + 0.999·8-s + (1.41 − 2.44i)9-s + (1.70 + 2.95i)10-s + (−0.5 − 0.866i)11-s + (−0.207 + 0.358i)12-s + 1.82·13-s + (1.62 − 2.09i)14-s − 1.41·15-s + (−0.5 + 0.866i)16-s + (3.82 + 6.63i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.119 − 0.207i)3-s + (−0.249 − 0.433i)4-s + (0.763 − 1.32i)5-s + 0.169·6-s + (−0.990 − 0.135i)7-s + 0.353·8-s + (0.471 − 0.816i)9-s + (0.539 + 0.935i)10-s + (−0.150 − 0.261i)11-s + (−0.0597 + 0.103i)12-s + 0.507·13-s + (0.433 − 0.558i)14-s − 0.365·15-s + (−0.125 + 0.216i)16-s + (0.928 + 1.60i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 154 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 154 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.893060 - 0.274410i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.893060 - 0.274410i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (2.62 + 0.358i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.207 + 0.358i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.70 + 2.95i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 - 1.82T + 13T^{2} \) |
| 17 | \( 1 + (-3.82 - 6.63i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.70 + 2.95i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.12 - 1.94i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 8.65T + 29T^{2} \) |
| 31 | \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.29 + 5.70i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.58T + 41T^{2} \) |
| 43 | \( 1 - 5.65T + 43T^{2} \) |
| 47 | \( 1 + (3.24 - 5.61i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.94 - 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.20 - 7.28i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.08 - 5.34i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.62 + 9.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.07T + 71T^{2} \) |
| 73 | \( 1 + (-3.29 - 5.70i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.37 + 4.11i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 16.1T + 83T^{2} \) |
| 89 | \( 1 + (-2.24 + 3.88i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.96987427626398481021945861405, −12.25794410540261778281537582760, −10.52854287270599097400495191133, −9.461100734723678984606578818064, −8.967848038800143092760677460070, −7.62484930781863561527086030701, −6.22983899953747251445802437981, −5.60298148705293741684887042122, −3.89170027425763571965200180972, −1.18793482470142238748542472840,
2.34699105183237197255238688742, 3.51784443134322464881269364834, 5.44871199081206338730042416471, 6.75083135928055445881585621403, 7.76059177999425684782929934578, 9.605279747146972834999705252091, 9.930048554416804552088510219465, 10.84787143369873288367956826505, 11.85330071571676246446667156880, 13.17745743229617104901435249613