L(s) = 1 | + i·2-s + 5-s + 7-s + i·8-s + i·10-s − 11-s + i·13-s + i·14-s − 16-s − i·19-s − i·22-s − 23-s − 26-s − i·29-s − i·31-s + ⋯ |
L(s) = 1 | + i·2-s + 5-s + 7-s + i·8-s + i·10-s − 11-s + i·13-s + i·14-s − 16-s − i·19-s − i·22-s − 23-s − 26-s − i·29-s − i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.505605893\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.505605893\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( 1 + iT - T^{2} \) |
| 31 | \( 1 + iT - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - iT - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + iT - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + iT - T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.656883299494052783065525492782, −8.939822321576115238436507285482, −7.931409685147906463448897509363, −7.59882340576138892270545793225, −6.45956311165182238866042229881, −5.92582804691262182445718514209, −5.09201535370790650163208335709, −4.36972547509940045346228038538, −2.50046753692131870060783957995, −1.92056654000551664774979599775,
1.39598526579720145480991906165, 2.20964697324240044925406340760, 3.09523048201631533229628724228, 4.24741045133763046753741138707, 5.43257425761806037616478071802, 5.86845016585359178143083629459, 7.16390636250963708560097389685, 7.914641630721072843438982510575, 8.771359059351679718477926816288, 9.809169839768427480760488778256