# Properties

 Label 2-1536-3.2-c0-0-0 Degree $2$ Conductor $1536$ Sign $-1$ Analytic cond. $0.766563$ Root an. cond. $0.875536$ Motivic weight $0$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + i·3-s + 1.41i·5-s − 1.41·7-s − 9-s − 1.41·15-s − 1.41i·21-s − 1.00·25-s − i·27-s + 1.41i·29-s − 1.41·31-s − 2.00i·35-s − 1.41i·45-s + 1.00·49-s − 1.41i·53-s + 2i·59-s + ⋯
 L(s)  = 1 + i·3-s + 1.41i·5-s − 1.41·7-s − 9-s − 1.41·15-s − 1.41i·21-s − 1.00·25-s − i·27-s + 1.41i·29-s − 1.41·31-s − 2.00i·35-s − 1.41i·45-s + 1.00·49-s − 1.41i·53-s + 2i·59-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1536$$    =    $$2^{9} \cdot 3$$ Sign: $-1$ Analytic conductor: $$0.766563$$ Root analytic conductor: $$0.875536$$ Motivic weight: $$0$$ Rational: no Arithmetic: yes Character: $\chi_{1536} (1025, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1536,\ (\ :0),\ -1)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$0.6306205026$$ $$L(\frac12)$$ $$\approx$$ $$0.6306205026$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 - iT$$
good5 $$1 - 1.41iT - T^{2}$$
7 $$1 + 1.41T + T^{2}$$
11 $$1 - T^{2}$$
13 $$1 + T^{2}$$
17 $$1 - T^{2}$$
19 $$1 + T^{2}$$
23 $$1 - T^{2}$$
29 $$1 - 1.41iT - T^{2}$$
31 $$1 + 1.41T + T^{2}$$
37 $$1 + T^{2}$$
41 $$1 - T^{2}$$
43 $$1 + T^{2}$$
47 $$1 - T^{2}$$
53 $$1 + 1.41iT - T^{2}$$
59 $$1 - 2iT - T^{2}$$
61 $$1 + T^{2}$$
67 $$1 + T^{2}$$
71 $$1 - T^{2}$$
73 $$1 + T^{2}$$
79 $$1 - 1.41T + T^{2}$$
83 $$1 - T^{2}$$
89 $$1 - T^{2}$$
97 $$1 + 2T + T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$