Properties

Label 2-1536-1.1-c1-0-9
Degree $2$
Conductor $1536$
Sign $1$
Analytic cond. $12.2650$
Root an. cond. $3.50214$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 1.41·5-s − 1.41·7-s + 9-s + 2·11-s − 1.41·15-s + 2·17-s + 4·19-s − 1.41·21-s − 2.82·23-s − 2.99·25-s + 27-s + 9.89·29-s + 7.07·31-s + 2·33-s + 2.00·35-s − 8.48·37-s + 6·41-s + 8·43-s − 1.41·45-s − 2.82·47-s − 5·49-s + 2·51-s − 1.41·53-s − 2.82·55-s + 4·57-s + 12·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.632·5-s − 0.534·7-s + 0.333·9-s + 0.603·11-s − 0.365·15-s + 0.485·17-s + 0.917·19-s − 0.308·21-s − 0.589·23-s − 0.599·25-s + 0.192·27-s + 1.83·29-s + 1.27·31-s + 0.348·33-s + 0.338·35-s − 1.39·37-s + 0.937·41-s + 1.21·43-s − 0.210·45-s − 0.412·47-s − 0.714·49-s + 0.280·51-s − 0.194·53-s − 0.381·55-s + 0.529·57-s + 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1536\)    =    \(2^{9} \cdot 3\)
Sign: $1$
Analytic conductor: \(12.2650\)
Root analytic conductor: \(3.50214\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1536} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1536,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.859802175\)
\(L(\frac12)\) \(\approx\) \(1.859802175\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
good5 \( 1 + 1.41T + 5T^{2} \)
7 \( 1 + 1.41T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + 2.82T + 23T^{2} \)
29 \( 1 - 9.89T + 29T^{2} \)
31 \( 1 - 7.07T + 31T^{2} \)
37 \( 1 + 8.48T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + 2.82T + 47T^{2} \)
53 \( 1 + 1.41T + 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 - 14.1T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 - 14.1T + 71T^{2} \)
73 \( 1 + 8T + 73T^{2} \)
79 \( 1 - 4.24T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.623023746496957437399267145123, −8.475374982140391211858934967833, −8.034776072701869713369129177743, −7.06589728763642699759212514089, −6.39227626325011928837343615527, −5.27007052034441234264207157605, −4.15703626568098124364510977627, −3.48616781407495673743751503909, −2.51249062672094151589915693632, −0.972818790182466361456442744907, 0.972818790182466361456442744907, 2.51249062672094151589915693632, 3.48616781407495673743751503909, 4.15703626568098124364510977627, 5.27007052034441234264207157605, 6.39227626325011928837343615527, 7.06589728763642699759212514089, 8.034776072701869713369129177743, 8.475374982140391211858934967833, 9.623023746496957437399267145123

Graph of the $Z$-function along the critical line