Properties

Label 2-1530-1.1-c1-0-8
Degree $2$
Conductor $1530$
Sign $1$
Analytic cond. $12.2171$
Root an. cond. $3.49529$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 2·7-s + 8-s − 10-s + 5·13-s + 2·14-s + 16-s + 17-s − 19-s − 20-s − 6·23-s + 25-s + 5·26-s + 2·28-s + 9·29-s − 31-s + 32-s + 34-s − 2·35-s − 4·37-s − 38-s − 40-s + 6·41-s + 2·43-s − 6·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.755·7-s + 0.353·8-s − 0.316·10-s + 1.38·13-s + 0.534·14-s + 1/4·16-s + 0.242·17-s − 0.229·19-s − 0.223·20-s − 1.25·23-s + 1/5·25-s + 0.980·26-s + 0.377·28-s + 1.67·29-s − 0.179·31-s + 0.176·32-s + 0.171·34-s − 0.338·35-s − 0.657·37-s − 0.162·38-s − 0.158·40-s + 0.937·41-s + 0.304·43-s − 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1530\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(12.2171\)
Root analytic conductor: \(3.49529\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1530,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.862090690\)
\(L(\frac12)\) \(\approx\) \(2.862090690\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.433299876561266540798922109824, −8.330379255828883631697848182662, −8.026077504275661231293872666033, −6.90821029334418725854960093133, −6.11394596643905626071679261434, −5.29109370401463266277531097982, −4.28236517276064695505966277810, −3.69887280245863187443405432019, −2.46037473404806064640866240691, −1.19089440743210782925474912944, 1.19089440743210782925474912944, 2.46037473404806064640866240691, 3.69887280245863187443405432019, 4.28236517276064695505966277810, 5.29109370401463266277531097982, 6.11394596643905626071679261434, 6.90821029334418725854960093133, 8.026077504275661231293872666033, 8.330379255828883631697848182662, 9.433299876561266540798922109824

Graph of the $Z$-function along the critical line