Properties

Label 2-1530-1.1-c1-0-22
Degree $2$
Conductor $1530$
Sign $-1$
Analytic cond. $12.2171$
Root an. cond. $3.49529$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 2·7-s + 8-s − 10-s + 2·11-s − 6·13-s − 2·14-s + 16-s − 17-s − 8·19-s − 20-s + 2·22-s + 2·23-s + 25-s − 6·26-s − 2·28-s − 6·29-s − 2·31-s + 32-s − 34-s + 2·35-s + 6·37-s − 8·38-s − 40-s − 2·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s + 0.353·8-s − 0.316·10-s + 0.603·11-s − 1.66·13-s − 0.534·14-s + 1/4·16-s − 0.242·17-s − 1.83·19-s − 0.223·20-s + 0.426·22-s + 0.417·23-s + 1/5·25-s − 1.17·26-s − 0.377·28-s − 1.11·29-s − 0.359·31-s + 0.176·32-s − 0.171·34-s + 0.338·35-s + 0.986·37-s − 1.29·38-s − 0.158·40-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1530\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(12.2171\)
Root analytic conductor: \(3.49529\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1530,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.148818807532985173604938781672, −8.165289990383159221567074208012, −7.17407676622257747637716061141, −6.68589731318848180555968808696, −5.76522650144127058684800715378, −4.69751156295169021925689279438, −4.04695885677905320524362153019, −3.01924876370414985708347922226, −2.02837263408024306182620544902, 0, 2.02837263408024306182620544902, 3.01924876370414985708347922226, 4.04695885677905320524362153019, 4.69751156295169021925689279438, 5.76522650144127058684800715378, 6.68589731318848180555968808696, 7.17407676622257747637716061141, 8.165289990383159221567074208012, 9.148818807532985173604938781672

Graph of the $Z$-function along the critical line