Properties

Label 2-1530-1.1-c1-0-0
Degree $2$
Conductor $1530$
Sign $1$
Analytic cond. $12.2171$
Root an. cond. $3.49529$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 4·7-s − 8-s + 10-s + 2·11-s − 6·13-s + 4·14-s + 16-s + 17-s − 20-s − 2·22-s + 25-s + 6·26-s − 4·28-s + 6·29-s − 32-s − 34-s + 4·35-s − 8·37-s + 40-s + 6·41-s + 6·43-s + 2·44-s + 8·47-s + 9·49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 1.51·7-s − 0.353·8-s + 0.316·10-s + 0.603·11-s − 1.66·13-s + 1.06·14-s + 1/4·16-s + 0.242·17-s − 0.223·20-s − 0.426·22-s + 1/5·25-s + 1.17·26-s − 0.755·28-s + 1.11·29-s − 0.176·32-s − 0.171·34-s + 0.676·35-s − 1.31·37-s + 0.158·40-s + 0.937·41-s + 0.914·43-s + 0.301·44-s + 1.16·47-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1530 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1530\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(12.2171\)
Root analytic conductor: \(3.49529\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1530,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6869398723\)
\(L(\frac12)\) \(\approx\) \(0.6869398723\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.437374128976191160202121184212, −8.883610310076228724358554356646, −7.79075585961504557584815401628, −7.07248460911324408971461400488, −6.52251870267944311756743329514, −5.49207315012584236022884052312, −4.27523349802411276856743533388, −3.24386876800813283298871644578, −2.38847012078832059052563246572, −0.62210569401833026805129236241, 0.62210569401833026805129236241, 2.38847012078832059052563246572, 3.24386876800813283298871644578, 4.27523349802411276856743533388, 5.49207315012584236022884052312, 6.52251870267944311756743329514, 7.07248460911324408971461400488, 7.79075585961504557584815401628, 8.883610310076228724358554356646, 9.437374128976191160202121184212

Graph of the $Z$-function along the critical line