Properties

Label 2-153-153.113-c1-0-5
Degree $2$
Conductor $153$
Sign $0.757 - 0.652i$
Analytic cond. $1.22171$
Root an. cond. $1.10531$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.50 + 0.329i)2-s + (1.66 − 0.483i)3-s + (4.21 − 1.13i)4-s + (1.60 + 3.25i)5-s + (−4.00 + 1.75i)6-s + (−1.58 − 0.779i)7-s + (−5.52 + 2.28i)8-s + (2.53 − 1.60i)9-s + (−5.09 − 7.62i)10-s + (0.00416 − 0.00141i)11-s + (6.47 − 3.91i)12-s + (0.705 + 2.63i)13-s + (4.21 + 1.42i)14-s + (4.24 + 4.64i)15-s + (5.49 − 3.17i)16-s + (−4.10 + 0.383i)17-s + ⋯
L(s)  = 1  + (−1.76 + 0.232i)2-s + (0.960 − 0.278i)3-s + (2.10 − 0.565i)4-s + (0.718 + 1.45i)5-s + (−1.63 + 0.717i)6-s + (−0.597 − 0.294i)7-s + (−1.95 + 0.808i)8-s + (0.844 − 0.535i)9-s + (−1.61 − 2.41i)10-s + (0.00125 − 0.000426i)11-s + (1.86 − 1.13i)12-s + (0.195 + 0.730i)13-s + (1.12 + 0.382i)14-s + (1.09 + 1.19i)15-s + (1.37 − 0.793i)16-s + (−0.995 + 0.0931i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $0.757 - 0.652i$
Analytic conductor: \(1.22171\)
Root analytic conductor: \(1.10531\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1/2),\ 0.757 - 0.652i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.707368 + 0.262601i\)
\(L(\frac12)\) \(\approx\) \(0.707368 + 0.262601i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.66 + 0.483i)T \)
17 \( 1 + (4.10 - 0.383i)T \)
good2 \( 1 + (2.50 - 0.329i)T + (1.93 - 0.517i)T^{2} \)
5 \( 1 + (-1.60 - 3.25i)T + (-3.04 + 3.96i)T^{2} \)
7 \( 1 + (1.58 + 0.779i)T + (4.26 + 5.55i)T^{2} \)
11 \( 1 + (-0.00416 + 0.00141i)T + (8.72 - 6.69i)T^{2} \)
13 \( 1 + (-0.705 - 2.63i)T + (-11.2 + 6.5i)T^{2} \)
19 \( 1 + (-6.69 - 2.77i)T + (13.4 + 13.4i)T^{2} \)
23 \( 1 + (-3.32 + 3.79i)T + (-3.00 - 22.8i)T^{2} \)
29 \( 1 + (-0.296 + 4.52i)T + (-28.7 - 3.78i)T^{2} \)
31 \( 1 + (0.107 - 0.315i)T + (-24.5 - 18.8i)T^{2} \)
37 \( 1 + (-0.151 - 0.761i)T + (-34.1 + 14.1i)T^{2} \)
41 \( 1 + (6.87 - 0.450i)T + (40.6 - 5.35i)T^{2} \)
43 \( 1 + (7.91 + 6.07i)T + (11.1 + 41.5i)T^{2} \)
47 \( 1 + (1.26 - 4.72i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (1.83 - 4.42i)T + (-37.4 - 37.4i)T^{2} \)
59 \( 1 + (-1.15 + 8.80i)T + (-56.9 - 15.2i)T^{2} \)
61 \( 1 + (-3.56 + 7.22i)T + (-37.1 - 48.3i)T^{2} \)
67 \( 1 + (6.84 + 3.95i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-7.33 + 1.45i)T + (65.5 - 27.1i)T^{2} \)
73 \( 1 + (4.87 + 3.25i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (-1.58 - 4.68i)T + (-62.6 + 48.0i)T^{2} \)
83 \( 1 + (1.07 + 8.14i)T + (-80.1 + 21.4i)T^{2} \)
89 \( 1 + (-1.47 + 1.47i)T - 89iT^{2} \)
97 \( 1 + (-0.313 - 0.0205i)T + (96.1 + 12.6i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38637283025129532738414742560, −11.63630945958649042735503117518, −10.52983889890939689716966186390, −9.829749354328179079789050303943, −9.142369971407135531866874222439, −7.935622452054787149945892381940, −6.84068778082507157971289642327, −6.52084857332052952153042356532, −3.19316556434545011305529585656, −1.95332552369550340010042901421, 1.39395688370224965924847989122, 2.95748971332956670756781407455, 5.18923668865278414340494073554, 6.99003564784872503678181003316, 8.207072657257264835440993379544, 8.996585345189362410280014912580, 9.440779292005487880795986147973, 10.25066227898047280854104899358, 11.61482321068789510550149139488, 12.93268141095462326758435170462

Graph of the $Z$-function along the critical line