Properties

Label 2-153-153.106-c3-0-34
Degree $2$
Conductor $153$
Sign $0.950 - 0.311i$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.81 + 1.05i)2-s + (4.83 + 1.90i)3-s + (−1.79 − 3.10i)4-s + (3.96 + 1.06i)5-s + (6.80 + 8.54i)6-s + (15.5 − 4.17i)7-s − 24.3i·8-s + (19.7 + 18.4i)9-s + (6.10 + 6.10i)10-s + (0.247 − 0.0662i)11-s + (−2.75 − 18.4i)12-s + (4.25 + 7.36i)13-s + (32.7 + 8.77i)14-s + (17.1 + 12.6i)15-s + (11.2 − 19.4i)16-s + (62.5 + 31.6i)17-s + ⋯
L(s)  = 1  + (0.643 + 0.371i)2-s + (0.930 + 0.366i)3-s + (−0.224 − 0.388i)4-s + (0.354 + 0.0950i)5-s + (0.462 + 0.581i)6-s + (0.841 − 0.225i)7-s − 1.07i·8-s + (0.731 + 0.681i)9-s + (0.192 + 0.192i)10-s + (0.00677 − 0.00181i)11-s + (−0.0663 − 0.443i)12-s + (0.0906 + 0.157i)13-s + (0.625 + 0.167i)14-s + (0.295 + 0.218i)15-s + (0.175 − 0.304i)16-s + (0.892 + 0.451i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.311i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.950 - 0.311i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $0.950 - 0.311i$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (106, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ 0.950 - 0.311i)\)

Particular Values

\(L(2)\) \(\approx\) \(3.26073 + 0.521245i\)
\(L(\frac12)\) \(\approx\) \(3.26073 + 0.521245i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-4.83 - 1.90i)T \)
17 \( 1 + (-62.5 - 31.6i)T \)
good2 \( 1 + (-1.81 - 1.05i)T + (4 + 6.92i)T^{2} \)
5 \( 1 + (-3.96 - 1.06i)T + (108. + 62.5i)T^{2} \)
7 \( 1 + (-15.5 + 4.17i)T + (297. - 171.5i)T^{2} \)
11 \( 1 + (-0.247 + 0.0662i)T + (1.15e3 - 665.5i)T^{2} \)
13 \( 1 + (-4.25 - 7.36i)T + (-1.09e3 + 1.90e3i)T^{2} \)
19 \( 1 + 48.7iT - 6.85e3T^{2} \)
23 \( 1 + (41.7 - 155. i)T + (-1.05e4 - 6.08e3i)T^{2} \)
29 \( 1 + (37.4 + 139. i)T + (-2.11e4 + 1.21e4i)T^{2} \)
31 \( 1 + (13.1 + 3.51i)T + (2.57e4 + 1.48e4i)T^{2} \)
37 \( 1 + (141. - 141. i)T - 5.06e4iT^{2} \)
41 \( 1 + (32.1 - 120. i)T + (-5.96e4 - 3.44e4i)T^{2} \)
43 \( 1 + (59.5 + 34.3i)T + (3.97e4 + 6.88e4i)T^{2} \)
47 \( 1 + (-114. + 198. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + 548. iT - 1.48e5T^{2} \)
59 \( 1 + (-104. + 60.2i)T + (1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (178. - 47.7i)T + (1.96e5 - 1.13e5i)T^{2} \)
67 \( 1 + (259. + 449. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + (176. - 176. i)T - 3.57e5iT^{2} \)
73 \( 1 + (614. - 614. i)T - 3.89e5iT^{2} \)
79 \( 1 + (809. - 216. i)T + (4.26e5 - 2.46e5i)T^{2} \)
83 \( 1 + (215. + 124. i)T + (2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 - 356.T + 7.04e5T^{2} \)
97 \( 1 + (91.2 + 340. i)T + (-7.90e5 + 4.56e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09092405827955704790398224702, −11.58762452880075272265822605280, −10.23191014928842823405863480772, −9.619013052411797591081968713992, −8.352537490030144545679930157210, −7.28895009252893934263625506459, −5.80079637887393645348686623351, −4.70130581031580875972342749222, −3.60160694863108912364948352779, −1.67060236747642813115214233786, 1.79235299401993800965859739527, 3.08935961569322946728838488555, 4.35094546749934412504853772877, 5.65305278288237753418006574254, 7.43871756734739614668230147015, 8.291419326795649154802191892643, 9.154446129443492625076869657892, 10.51173597377507638214866493352, 11.90314543591948032407418028941, 12.51508792324805461708000413644

Graph of the $Z$-function along the critical line