Properties

Label 2-153-1.1-c3-0-7
Degree $2$
Conductor $153$
Sign $-1$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.56·2-s + 23.0·4-s − 5.10·5-s − 6.75·7-s − 83.5·8-s + 28.4·10-s + 53.8·11-s − 45.8·13-s + 37.6·14-s + 281.·16-s + 17·17-s + 93.8·19-s − 117.·20-s − 299.·22-s − 40.2·23-s − 98.9·25-s + 255.·26-s − 155.·28-s − 224.·29-s − 235.·31-s − 896.·32-s − 94.6·34-s + 34.4·35-s − 203.·37-s − 522.·38-s + 426.·40-s + 245.·41-s + ⋯
L(s)  = 1  − 1.96·2-s + 2.87·4-s − 0.456·5-s − 0.364·7-s − 3.69·8-s + 0.898·10-s + 1.47·11-s − 0.978·13-s + 0.718·14-s + 4.39·16-s + 0.242·17-s + 1.13·19-s − 1.31·20-s − 2.90·22-s − 0.365·23-s − 0.791·25-s + 1.92·26-s − 1.04·28-s − 1.43·29-s − 1.36·31-s − 4.95·32-s − 0.477·34-s + 0.166·35-s − 0.905·37-s − 2.23·38-s + 1.68·40-s + 0.936·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 - 17T \)
good2 \( 1 + 5.56T + 8T^{2} \)
5 \( 1 + 5.10T + 125T^{2} \)
7 \( 1 + 6.75T + 343T^{2} \)
11 \( 1 - 53.8T + 1.33e3T^{2} \)
13 \( 1 + 45.8T + 2.19e3T^{2} \)
19 \( 1 - 93.8T + 6.85e3T^{2} \)
23 \( 1 + 40.2T + 1.21e4T^{2} \)
29 \( 1 + 224.T + 2.43e4T^{2} \)
31 \( 1 + 235.T + 2.97e4T^{2} \)
37 \( 1 + 203.T + 5.06e4T^{2} \)
41 \( 1 - 245.T + 6.89e4T^{2} \)
43 \( 1 - 120.T + 7.95e4T^{2} \)
47 \( 1 + 56.5T + 1.03e5T^{2} \)
53 \( 1 + 177.T + 1.48e5T^{2} \)
59 \( 1 + 739.T + 2.05e5T^{2} \)
61 \( 1 + 895.T + 2.26e5T^{2} \)
67 \( 1 + 182.T + 3.00e5T^{2} \)
71 \( 1 + 796.T + 3.57e5T^{2} \)
73 \( 1 - 764.T + 3.89e5T^{2} \)
79 \( 1 - 613.T + 4.93e5T^{2} \)
83 \( 1 + 289.T + 5.71e5T^{2} \)
89 \( 1 - 516.T + 7.04e5T^{2} \)
97 \( 1 - 643.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.73764348639962444439228778057, −10.81343556318154555043171253030, −9.446034263769245457050698780613, −9.325757825910972159457224351435, −7.78373428197856523003261724800, −7.18642299157098383733562004188, −5.97086716401058306738503534112, −3.41460676380534182804424992030, −1.66107391815441758875848638956, 0, 1.66107391815441758875848638956, 3.41460676380534182804424992030, 5.97086716401058306738503534112, 7.18642299157098383733562004188, 7.78373428197856523003261724800, 9.325757825910972159457224351435, 9.446034263769245457050698780613, 10.81343556318154555043171253030, 11.73764348639962444439228778057

Graph of the $Z$-function along the critical line