Properties

Label 2-153-1.1-c3-0-19
Degree $2$
Conductor $153$
Sign $-1$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.56·2-s + 4.72·4-s − 20.6·5-s − 5.24·7-s − 11.6·8-s − 73.6·10-s − 5.21·11-s − 14.8·13-s − 18.7·14-s − 79.4·16-s + 17·17-s + 26.2·19-s − 97.5·20-s − 18.5·22-s − 165.·23-s + 300.·25-s − 52.8·26-s − 24.7·28-s + 42.3·29-s + 263.·31-s − 190.·32-s + 60.6·34-s + 108.·35-s − 322.·37-s + 93.6·38-s + 240.·40-s − 321.·41-s + ⋯
L(s)  = 1  + 1.26·2-s + 0.591·4-s − 1.84·5-s − 0.283·7-s − 0.515·8-s − 2.32·10-s − 0.142·11-s − 0.315·13-s − 0.357·14-s − 1.24·16-s + 0.242·17-s + 0.317·19-s − 1.09·20-s − 0.180·22-s − 1.49·23-s + 2.40·25-s − 0.398·26-s − 0.167·28-s + 0.271·29-s + 1.52·31-s − 1.05·32-s + 0.305·34-s + 0.522·35-s − 1.43·37-s + 0.399·38-s + 0.951·40-s − 1.22·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 - 17T \)
good2 \( 1 - 3.56T + 8T^{2} \)
5 \( 1 + 20.6T + 125T^{2} \)
7 \( 1 + 5.24T + 343T^{2} \)
11 \( 1 + 5.21T + 1.33e3T^{2} \)
13 \( 1 + 14.8T + 2.19e3T^{2} \)
19 \( 1 - 26.2T + 6.85e3T^{2} \)
23 \( 1 + 165.T + 1.21e4T^{2} \)
29 \( 1 - 42.3T + 2.43e4T^{2} \)
31 \( 1 - 263.T + 2.97e4T^{2} \)
37 \( 1 + 322.T + 5.06e4T^{2} \)
41 \( 1 + 321.T + 6.89e4T^{2} \)
43 \( 1 - 385.T + 7.95e4T^{2} \)
47 \( 1 + 309.T + 1.03e5T^{2} \)
53 \( 1 + 192.T + 1.48e5T^{2} \)
59 \( 1 - 587.T + 2.05e5T^{2} \)
61 \( 1 + 241.T + 2.26e5T^{2} \)
67 \( 1 - 205.T + 3.00e5T^{2} \)
71 \( 1 + 933.T + 3.57e5T^{2} \)
73 \( 1 + 869.T + 3.89e5T^{2} \)
79 \( 1 - 102.T + 4.93e5T^{2} \)
83 \( 1 + 298.T + 5.71e5T^{2} \)
89 \( 1 - 666.T + 7.04e5T^{2} \)
97 \( 1 - 1.35e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.96802574096708553715490528967, −11.68623690867923413808601613238, −10.21106716116437905220289577343, −8.631864082395563892075012110325, −7.64099022521358973174475380491, −6.45211447012361082084340485112, −4.96451583537262319485864484390, −4.01704296448586076519686293620, −3.08465486289132934211080619057, 0, 3.08465486289132934211080619057, 4.01704296448586076519686293620, 4.96451583537262319485864484390, 6.45211447012361082084340485112, 7.64099022521358973174475380491, 8.631864082395563892075012110325, 10.21106716116437905220289577343, 11.68623690867923413808601613238, 11.96802574096708553715490528967

Graph of the $Z$-function along the critical line