Properties

Label 2-153-1.1-c3-0-11
Degree $2$
Conductor $153$
Sign $-1$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.79·2-s − 0.185·4-s − 7.18·5-s + 19.9·7-s + 22.8·8-s + 20.0·10-s + 20.2·11-s − 69.3·13-s − 55.6·14-s − 62.4·16-s − 17·17-s − 2.16·19-s + 1.33·20-s − 56.7·22-s + 13.0·23-s − 73.3·25-s + 193.·26-s − 3.69·28-s − 246.·29-s − 166.·31-s − 8.39·32-s + 47.5·34-s − 143.·35-s − 162.·37-s + 6.04·38-s − 164.·40-s − 253.·41-s + ⋯
L(s)  = 1  − 0.988·2-s − 0.0231·4-s − 0.642·5-s + 1.07·7-s + 1.01·8-s + 0.635·10-s + 0.555·11-s − 1.47·13-s − 1.06·14-s − 0.976·16-s − 0.242·17-s − 0.0261·19-s + 0.0149·20-s − 0.549·22-s + 0.118·23-s − 0.586·25-s + 1.46·26-s − 0.0249·28-s − 1.58·29-s − 0.966·31-s − 0.0463·32-s + 0.239·34-s − 0.691·35-s − 0.720·37-s + 0.0258·38-s − 0.649·40-s − 0.965·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + 17T \)
good2 \( 1 + 2.79T + 8T^{2} \)
5 \( 1 + 7.18T + 125T^{2} \)
7 \( 1 - 19.9T + 343T^{2} \)
11 \( 1 - 20.2T + 1.33e3T^{2} \)
13 \( 1 + 69.3T + 2.19e3T^{2} \)
19 \( 1 + 2.16T + 6.85e3T^{2} \)
23 \( 1 - 13.0T + 1.21e4T^{2} \)
29 \( 1 + 246.T + 2.43e4T^{2} \)
31 \( 1 + 166.T + 2.97e4T^{2} \)
37 \( 1 + 162.T + 5.06e4T^{2} \)
41 \( 1 + 253.T + 6.89e4T^{2} \)
43 \( 1 - 556.T + 7.95e4T^{2} \)
47 \( 1 + 198.T + 1.03e5T^{2} \)
53 \( 1 + 496.T + 1.48e5T^{2} \)
59 \( 1 - 343.T + 2.05e5T^{2} \)
61 \( 1 - 332.T + 2.26e5T^{2} \)
67 \( 1 + 169.T + 3.00e5T^{2} \)
71 \( 1 - 509.T + 3.57e5T^{2} \)
73 \( 1 + 621.T + 3.89e5T^{2} \)
79 \( 1 + 1.12e3T + 4.93e5T^{2} \)
83 \( 1 - 485.T + 5.71e5T^{2} \)
89 \( 1 + 1.03e3T + 7.04e5T^{2} \)
97 \( 1 - 1.01e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70828352468553040967900413749, −10.96965997318068539077218433579, −9.778701373800632889397996087190, −8.897996537578487955617633066410, −7.83474739392216022566928054928, −7.22694930000157491336706397957, −5.17720788170549705638842089984, −4.08902997194734833753093184761, −1.80764492040638991603309607579, 0, 1.80764492040638991603309607579, 4.08902997194734833753093184761, 5.17720788170549705638842089984, 7.22694930000157491336706397957, 7.83474739392216022566928054928, 8.897996537578487955617633066410, 9.778701373800632889397996087190, 10.96965997318068539077218433579, 11.70828352468553040967900413749

Graph of the $Z$-function along the critical line