Properties

Label 2-152e2-1.1-c1-0-41
Degree $2$
Conductor $23104$
Sign $-1$
Analytic cond. $184.486$
Root an. cond. $13.5825$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 3·7-s − 3·9-s + 5·11-s − 7·17-s − 4·23-s − 4·25-s + 3·35-s + 43-s − 3·45-s + 13·47-s + 2·49-s + 5·55-s − 15·61-s − 9·63-s − 11·73-s + 15·77-s + 9·81-s + 16·83-s − 7·85-s − 15·99-s + 101-s + 103-s + 107-s + 109-s + 113-s − 4·115-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.13·7-s − 9-s + 1.50·11-s − 1.69·17-s − 0.834·23-s − 4/5·25-s + 0.507·35-s + 0.152·43-s − 0.447·45-s + 1.89·47-s + 2/7·49-s + 0.674·55-s − 1.92·61-s − 1.13·63-s − 1.28·73-s + 1.70·77-s + 81-s + 1.75·83-s − 0.759·85-s − 1.50·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.373·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23104\)    =    \(2^{6} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(184.486\)
Root analytic conductor: \(13.5825\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23104,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 13 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 15 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.56839485069380, −15.17230349347647, −14.52317172748590, −14.15130228690412, −13.71436392907902, −13.28391777861603, −12.19300053145329, −11.96051148328597, −11.38069768394070, −10.93570174149197, −10.41347264861475, −9.443794368809015, −9.092956546288065, −8.629390887500896, −8.011352220756035, −7.362040876502239, −6.572590303737043, −6.075856607537235, −5.593405741315282, −4.674078741636069, −4.258099067342318, −3.551055080698526, −2.470107466540217, −1.978925811172291, −1.224548029807122, 0, 1.224548029807122, 1.978925811172291, 2.470107466540217, 3.551055080698526, 4.258099067342318, 4.674078741636069, 5.593405741315282, 6.075856607537235, 6.572590303737043, 7.362040876502239, 8.011352220756035, 8.629390887500896, 9.092956546288065, 9.443794368809015, 10.41347264861475, 10.93570174149197, 11.38069768394070, 11.96051148328597, 12.19300053145329, 13.28391777861603, 13.71436392907902, 14.15130228690412, 14.52317172748590, 15.17230349347647, 15.56839485069380

Graph of the $Z$-function along the critical line