L(s) = 1 | + 5-s − 9-s + 2·11-s − 19-s + 25-s − 45-s + 49-s + 2·55-s − 2·61-s + 81-s − 95-s − 2·99-s − 2·101-s + ⋯ |
L(s) = 1 | + 5-s − 9-s + 2·11-s − 19-s + 25-s − 45-s + 49-s + 2·55-s − 2·61-s + 81-s − 95-s − 2·99-s − 2·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.331803221\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.331803221\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 + T )^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.416010247014081163035057639074, −9.027606780314589063955463168702, −8.314827988416942982929500973221, −7.02068134836168526815844492735, −6.29215254638267265602568859164, −5.80012734247772914022913454480, −4.65499219945786503864110380295, −3.66507747376751859802743192347, −2.51739801830774741534626891070, −1.41974404229939219259928729519,
1.41974404229939219259928729519, 2.51739801830774741534626891070, 3.66507747376751859802743192347, 4.65499219945786503864110380295, 5.80012734247772914022913454480, 6.29215254638267265602568859164, 7.02068134836168526815844492735, 8.314827988416942982929500973221, 9.027606780314589063955463168702, 9.416010247014081163035057639074