L(s) = 1 | + (1.52 − 2.63i)3-s + (−0.5 + 0.866i)5-s + 0.609·7-s + (−3.14 − 5.44i)9-s − 4.48·11-s + (−2.21 − 3.84i)13-s + (1.52 + 2.63i)15-s + (−1.45 + 2.51i)17-s + (−3.60 + 2.44i)19-s + (0.928 − 1.60i)21-s + (−1.42 − 2.46i)23-s + (−0.499 − 0.866i)25-s − 10.0·27-s + (−0.558 − 0.966i)29-s + 6.22·31-s + ⋯ |
L(s) = 1 | + (0.879 − 1.52i)3-s + (−0.223 + 0.387i)5-s + 0.230·7-s + (−1.04 − 1.81i)9-s − 1.35·11-s + (−0.615 − 1.06i)13-s + (0.393 + 0.681i)15-s + (−0.352 + 0.609i)17-s + (−0.827 + 0.562i)19-s + (0.202 − 0.350i)21-s + (−0.296 − 0.514i)23-s + (−0.0999 − 0.173i)25-s − 1.92·27-s + (−0.103 − 0.179i)29-s + 1.11·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 - 0.235i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.971 - 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9955447928\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9955447928\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (3.60 - 2.44i)T \) |
good | 3 | \( 1 + (-1.52 + 2.63i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 - 0.609T + 7T^{2} \) |
| 11 | \( 1 + 4.48T + 11T^{2} \) |
| 13 | \( 1 + (2.21 + 3.84i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.45 - 2.51i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.42 + 2.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.558 + 0.966i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.22T + 31T^{2} \) |
| 37 | \( 1 + 3.77T + 37T^{2} \) |
| 41 | \( 1 + (-4.15 + 7.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.99 - 8.65i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.94 + 5.09i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.22 + 7.31i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.11 + 8.86i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.49 - 4.31i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.23 - 7.34i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.80 + 10.0i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.86 - 3.22i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.51 + 7.82i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 2.12T + 83T^{2} \) |
| 89 | \( 1 + (3.96 + 6.86i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.83 + 8.37i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.485929060140432133405246738435, −8.169056033435400965594280203910, −7.64313229693958104142871155146, −6.75877697559628381508127988671, −6.04353408180393833287352503144, −4.92941285733746910279880201276, −3.50566300119912289913359451543, −2.61955652257050509348914854238, −1.93953733543096489774511647582, −0.31348889387892447092718346522,
2.20810986168350107341368007094, 2.99122302212572584689176181222, 4.15529622548916527069354240359, 4.74145685839509104731879609680, 5.31254120156239480015882168846, 6.76787580541024699059562443480, 7.88447955993662227592146076950, 8.383228261101362862587408096318, 9.249304860557456713849085007517, 9.700126296100675691647287711512