L(s) = 1 | + (−1.28 + 2.21i)3-s + (−0.5 + 0.866i)5-s − 0.438·7-s + (−1.78 − 3.08i)9-s − 11-s + (1 + 1.73i)13-s + (−1.28 − 2.21i)15-s + (−2.56 + 4.43i)17-s + (2.5 + 3.57i)19-s + (0.561 − 0.972i)21-s + (−2.34 − 4.05i)23-s + (−0.499 − 0.866i)25-s + 1.43·27-s + (−1 − 1.73i)29-s − 10.2·31-s + ⋯ |
L(s) = 1 | + (−0.739 + 1.28i)3-s + (−0.223 + 0.387i)5-s − 0.165·7-s + (−0.593 − 1.02i)9-s − 0.301·11-s + (0.277 + 0.480i)13-s + (−0.330 − 0.572i)15-s + (−0.621 + 1.07i)17-s + (0.573 + 0.819i)19-s + (0.122 − 0.212i)21-s + (−0.488 − 0.845i)23-s + (−0.0999 − 0.173i)25-s + 0.276·27-s + (−0.185 − 0.321i)29-s − 1.84·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.221 + 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.221 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1730277849\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1730277849\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-2.5 - 3.57i)T \) |
good | 3 | \( 1 + (1.28 - 2.21i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 0.438T + 7T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 + (-1 - 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.56 - 4.43i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (2.34 + 4.05i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1 + 1.73i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 10.2T + 31T^{2} \) |
| 37 | \( 1 + 4.68T + 37T^{2} \) |
| 41 | \( 1 + (-3.06 + 5.30i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.56 + 2.70i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.43 - 2.49i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.78 - 6.54i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.28 + 12.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.56 + 4.43i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.71 - 8.17i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.12 + 14.0i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.842 + 1.45i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.56 - 9.63i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 10.8T + 83T^{2} \) |
| 89 | \( 1 + (-1.34 - 2.32i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.842 - 1.45i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13093372064668499284482401887, −9.437198728926567339884006820087, −8.607774985083233045395016819805, −7.65477824394315366163176538269, −6.59005265012597755974375691984, −5.84589048318705728931731542334, −5.08304803830223293469458239309, −3.99733703012189420006564544915, −3.63467803888061571266997020742, −2.04998185605813079083741130273,
0.080060210428464532928350605567, 1.21313058010813027384973123323, 2.42450661604398096039379406919, 3.67205528025746210728442493852, 5.07680652642631327101979343945, 5.55905041176864560052761320222, 6.58494977661014021792291703181, 7.28696029580306736226170161730, 7.78992622615567940899210411101, 8.855928863629385804396367926091