Properties

Label 2-1520-1.1-c1-0-26
Degree $2$
Conductor $1520$
Sign $-1$
Analytic cond. $12.1372$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.81·3-s − 5-s + 4.91·7-s + 0.289·9-s − 0.578·11-s − 6.39·13-s + 1.81·15-s − 0.710·17-s − 19-s − 8.91·21-s + 2.71·23-s + 25-s + 4.91·27-s + 6.54·29-s − 1.42·31-s + 1.04·33-s − 4.91·35-s − 9.10·37-s + 11.5·39-s − 11.0·41-s − 5.83·43-s − 0.289·45-s + 1.15·47-s + 17.1·49-s + 1.28·51-s + 13.2·53-s + 0.578·55-s + ⋯
L(s)  = 1  − 1.04·3-s − 0.447·5-s + 1.85·7-s + 0.0963·9-s − 0.174·11-s − 1.77·13-s + 0.468·15-s − 0.172·17-s − 0.229·19-s − 1.94·21-s + 0.565·23-s + 0.200·25-s + 0.946·27-s + 1.21·29-s − 0.255·31-s + 0.182·33-s − 0.831·35-s − 1.49·37-s + 1.85·39-s − 1.72·41-s − 0.889·43-s − 0.0431·45-s + 0.168·47-s + 2.45·49-s + 0.180·51-s + 1.82·53-s + 0.0779·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1520\)    =    \(2^{4} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(12.1372\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + 1.81T + 3T^{2} \)
7 \( 1 - 4.91T + 7T^{2} \)
11 \( 1 + 0.578T + 11T^{2} \)
13 \( 1 + 6.39T + 13T^{2} \)
17 \( 1 + 0.710T + 17T^{2} \)
23 \( 1 - 2.71T + 23T^{2} \)
29 \( 1 - 6.54T + 29T^{2} \)
31 \( 1 + 1.42T + 31T^{2} \)
37 \( 1 + 9.10T + 37T^{2} \)
41 \( 1 + 11.0T + 41T^{2} \)
43 \( 1 + 5.83T + 43T^{2} \)
47 \( 1 - 1.15T + 47T^{2} \)
53 \( 1 - 13.2T + 53T^{2} \)
59 \( 1 + 11.3T + 59T^{2} \)
61 \( 1 + 9.04T + 61T^{2} \)
67 \( 1 + 2.97T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 9.38T + 73T^{2} \)
79 \( 1 + 4.37T + 79T^{2} \)
83 \( 1 - 0.372T + 83T^{2} \)
89 \( 1 + 16.6T + 89T^{2} \)
97 \( 1 - 3.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.860802365675483176211066258883, −8.254614497709732878824615339164, −7.38394875407072967812688464763, −6.76096379848190048134819747909, −5.41099517224066101967811834690, −4.99732562136610174913424466559, −4.40055200700155236134090076653, −2.78532423606824347924427876538, −1.54513954007592035166355729424, 0, 1.54513954007592035166355729424, 2.78532423606824347924427876538, 4.40055200700155236134090076653, 4.99732562136610174913424466559, 5.41099517224066101967811834690, 6.76096379848190048134819747909, 7.38394875407072967812688464763, 8.254614497709732878824615339164, 8.860802365675483176211066258883

Graph of the $Z$-function along the critical line