Properties

Label 2-1520-1.1-c1-0-16
Degree $2$
Conductor $1520$
Sign $-1$
Analytic cond. $12.1372$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73·3-s − 5-s + 4.46·9-s − 2·11-s − 0.732·13-s + 2.73·15-s + 7.46·17-s − 19-s + 1.46·23-s + 25-s − 3.99·27-s − 3.46·29-s − 4·31-s + 5.46·33-s + 7.66·37-s + 2·39-s + 0.535·41-s + 2.92·43-s − 4.46·45-s + 2.92·47-s − 7·49-s − 20.3·51-s − 11.6·53-s + 2·55-s + 2.73·57-s − 1.46·59-s − 6.53·61-s + ⋯
L(s)  = 1  − 1.57·3-s − 0.447·5-s + 1.48·9-s − 0.603·11-s − 0.203·13-s + 0.705·15-s + 1.81·17-s − 0.229·19-s + 0.305·23-s + 0.200·25-s − 0.769·27-s − 0.643·29-s − 0.718·31-s + 0.951·33-s + 1.25·37-s + 0.320·39-s + 0.0836·41-s + 0.446·43-s − 0.665·45-s + 0.427·47-s − 49-s − 2.85·51-s − 1.60·53-s + 0.269·55-s + 0.361·57-s − 0.190·59-s − 0.836·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1520\)    =    \(2^{4} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(12.1372\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + 2.73T + 3T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 0.732T + 13T^{2} \)
17 \( 1 - 7.46T + 17T^{2} \)
23 \( 1 - 1.46T + 23T^{2} \)
29 \( 1 + 3.46T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 7.66T + 37T^{2} \)
41 \( 1 - 0.535T + 41T^{2} \)
43 \( 1 - 2.92T + 43T^{2} \)
47 \( 1 - 2.92T + 47T^{2} \)
53 \( 1 + 11.6T + 53T^{2} \)
59 \( 1 + 1.46T + 59T^{2} \)
61 \( 1 + 6.53T + 61T^{2} \)
67 \( 1 - 4.19T + 67T^{2} \)
71 \( 1 + 10.9T + 71T^{2} \)
73 \( 1 + 10.3T + 73T^{2} \)
79 \( 1 - 8.39T + 79T^{2} \)
83 \( 1 - 5.46T + 83T^{2} \)
89 \( 1 + 3.46T + 89T^{2} \)
97 \( 1 + 15.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.285903543570249034794321054606, −7.933432632411593856442196436643, −7.49175366085395270835962915034, −6.46669004041538687425617206179, −5.67706180849518134015040380342, −5.11122108738810566184958474401, −4.17999410036667507571703733933, −3.00674315700933097112064998749, −1.29533520211090669339640356869, 0, 1.29533520211090669339640356869, 3.00674315700933097112064998749, 4.17999410036667507571703733933, 5.11122108738810566184958474401, 5.67706180849518134015040380342, 6.46669004041538687425617206179, 7.49175366085395270835962915034, 7.933432632411593856442196436643, 9.285903543570249034794321054606

Graph of the $Z$-function along the critical line