Properties

Label 2-1520-1.1-c1-0-1
Degree $2$
Conductor $1520$
Sign $1$
Analytic cond. $12.1372$
Root an. cond. $3.48385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·3-s − 5-s − 2.82·7-s − 0.999·9-s − 4.82·11-s + 0.585·13-s + 1.41·15-s − 0.828·17-s + 19-s + 4.00·21-s − 4·23-s + 25-s + 5.65·27-s + 4.82·29-s + 6.82·33-s + 2.82·35-s + 1.75·37-s − 0.828·39-s + 4.82·41-s + 2.82·43-s + 0.999·45-s − 8.48·47-s + 1.00·49-s + 1.17·51-s − 1.07·53-s + 4.82·55-s − 1.41·57-s + ⋯
L(s)  = 1  − 0.816·3-s − 0.447·5-s − 1.06·7-s − 0.333·9-s − 1.45·11-s + 0.162·13-s + 0.365·15-s − 0.200·17-s + 0.229·19-s + 0.872·21-s − 0.834·23-s + 0.200·25-s + 1.08·27-s + 0.896·29-s + 1.18·33-s + 0.478·35-s + 0.288·37-s − 0.132·39-s + 0.754·41-s + 0.431·43-s + 0.149·45-s − 1.23·47-s + 0.142·49-s + 0.164·51-s − 0.147·53-s + 0.651·55-s − 0.187·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1520\)    =    \(2^{4} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(12.1372\)
Root analytic conductor: \(3.48385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5234563313\)
\(L(\frac12)\) \(\approx\) \(0.5234563313\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + 1.41T + 3T^{2} \)
7 \( 1 + 2.82T + 7T^{2} \)
11 \( 1 + 4.82T + 11T^{2} \)
13 \( 1 - 0.585T + 13T^{2} \)
17 \( 1 + 0.828T + 17T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 4.82T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 1.75T + 37T^{2} \)
41 \( 1 - 4.82T + 41T^{2} \)
43 \( 1 - 2.82T + 43T^{2} \)
47 \( 1 + 8.48T + 47T^{2} \)
53 \( 1 + 1.07T + 53T^{2} \)
59 \( 1 - 2.82T + 59T^{2} \)
61 \( 1 - 9.65T + 61T^{2} \)
67 \( 1 - 6.58T + 67T^{2} \)
71 \( 1 - 7.31T + 71T^{2} \)
73 \( 1 + 16.1T + 73T^{2} \)
79 \( 1 - 14.8T + 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + 8.82T + 89T^{2} \)
97 \( 1 - 6.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.678396174006840221426253358788, −8.546023845162878341187752307343, −7.901800735337600638582187594710, −6.90713023617083646657899514980, −6.14750277908761481683413296837, −5.44996691928555218222450854756, −4.55945215810712469391339379799, −3.36684813268620376838480250098, −2.51801468018039126786721732517, −0.50151682254725627847781573475, 0.50151682254725627847781573475, 2.51801468018039126786721732517, 3.36684813268620376838480250098, 4.55945215810712469391339379799, 5.44996691928555218222450854756, 6.14750277908761481683413296837, 6.90713023617083646657899514980, 7.901800735337600638582187594710, 8.546023845162878341187752307343, 9.678396174006840221426253358788

Graph of the $Z$-function along the critical line