L(s) = 1 | − 1.41·3-s − 5-s − 2.82·7-s − 0.999·9-s − 4.82·11-s + 0.585·13-s + 1.41·15-s − 0.828·17-s + 19-s + 4.00·21-s − 4·23-s + 25-s + 5.65·27-s + 4.82·29-s + 6.82·33-s + 2.82·35-s + 1.75·37-s − 0.828·39-s + 4.82·41-s + 2.82·43-s + 0.999·45-s − 8.48·47-s + 1.00·49-s + 1.17·51-s − 1.07·53-s + 4.82·55-s − 1.41·57-s + ⋯ |
L(s) = 1 | − 0.816·3-s − 0.447·5-s − 1.06·7-s − 0.333·9-s − 1.45·11-s + 0.162·13-s + 0.365·15-s − 0.200·17-s + 0.229·19-s + 0.872·21-s − 0.834·23-s + 0.200·25-s + 1.08·27-s + 0.896·29-s + 1.18·33-s + 0.478·35-s + 0.288·37-s − 0.132·39-s + 0.754·41-s + 0.431·43-s + 0.149·45-s − 1.23·47-s + 0.142·49-s + 0.164·51-s − 0.147·53-s + 0.651·55-s − 0.187·57-s + ⋯ |
Λ(s)=(=(1520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5234563313 |
L(21) |
≈ |
0.5234563313 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 19 | 1−T |
good | 3 | 1+1.41T+3T2 |
| 7 | 1+2.82T+7T2 |
| 11 | 1+4.82T+11T2 |
| 13 | 1−0.585T+13T2 |
| 17 | 1+0.828T+17T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−4.82T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−1.75T+37T2 |
| 41 | 1−4.82T+41T2 |
| 43 | 1−2.82T+43T2 |
| 47 | 1+8.48T+47T2 |
| 53 | 1+1.07T+53T2 |
| 59 | 1−2.82T+59T2 |
| 61 | 1−9.65T+61T2 |
| 67 | 1−6.58T+67T2 |
| 71 | 1−7.31T+71T2 |
| 73 | 1+16.1T+73T2 |
| 79 | 1−14.8T+79T2 |
| 83 | 1+8T+83T2 |
| 89 | 1+8.82T+89T2 |
| 97 | 1−6.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.678396174006840221426253358788, −8.546023845162878341187752307343, −7.901800735337600638582187594710, −6.90713023617083646657899514980, −6.14750277908761481683413296837, −5.44996691928555218222450854756, −4.55945215810712469391339379799, −3.36684813268620376838480250098, −2.51801468018039126786721732517, −0.50151682254725627847781573475,
0.50151682254725627847781573475, 2.51801468018039126786721732517, 3.36684813268620376838480250098, 4.55945215810712469391339379799, 5.44996691928555218222450854756, 6.14750277908761481683413296837, 6.90713023617083646657899514980, 7.901800735337600638582187594710, 8.546023845162878341187752307343, 9.678396174006840221426253358788