L(s) = 1 | + (0.173 − 0.984i)2-s + (0.266 + 0.223i)3-s + (−0.939 − 0.342i)4-s + (0.266 − 0.223i)6-s + (−0.5 + 0.866i)8-s + (−0.152 − 0.866i)9-s + (−0.766 + 1.32i)11-s + (−0.173 − 0.300i)12-s + (0.766 + 0.642i)16-s + (−0.173 + 0.984i)17-s − 0.879·18-s + (−0.939 − 0.342i)19-s + (1.17 + 0.984i)22-s + (−0.326 + 0.118i)24-s + (0.766 − 0.642i)25-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)2-s + (0.266 + 0.223i)3-s + (−0.939 − 0.342i)4-s + (0.266 − 0.223i)6-s + (−0.5 + 0.866i)8-s + (−0.152 − 0.866i)9-s + (−0.766 + 1.32i)11-s + (−0.173 − 0.300i)12-s + (0.766 + 0.642i)16-s + (−0.173 + 0.984i)17-s − 0.879·18-s + (−0.939 − 0.342i)19-s + (1.17 + 0.984i)22-s + (−0.326 + 0.118i)24-s + (0.766 − 0.642i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6638767189\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6638767189\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (0.939 + 0.342i)T \) |
good | 3 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 5 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.266 + 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (0.326 + 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (-1.17 - 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.63752696247498362069275879494, −12.39560689713815246110174439136, −10.93018617005960186477121113874, −10.15973972192527861392425112046, −9.196965266464010512139947826405, −8.203525440819530783913216385003, −6.51769894007172285748150378118, −4.94318360401979582091211444118, −3.81922436752524545879087043351, −2.28876432896270193808624426026,
3.04413068870740298625400270153, 4.80112177596242387302279731740, 5.83413913608135674393486940162, 7.13243471349478150365941830909, 8.163037950155806671509928702442, 8.838630690342372699794015776849, 10.29414127559180691733208346014, 11.42047336298945611090097665128, 12.93554009645926971070636102265, 13.48963246185039348730714480293