Properties

Label 2-152-1.1-c3-0-7
Degree $2$
Conductor $152$
Sign $-1$
Analytic cond. $8.96829$
Root an. cond. $2.99471$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.3·3-s + 14.1·5-s − 4.06·7-s + 79.2·9-s − 5.53·11-s − 45.6·13-s − 145.·15-s − 92.8·17-s + 19·19-s + 41.8·21-s − 57.0·23-s + 75.1·25-s − 538.·27-s − 290.·29-s + 163.·31-s + 57.0·33-s − 57.4·35-s − 81.3·37-s + 470.·39-s + 73.1·41-s − 346.·43-s + 1.12e3·45-s + 503.·47-s − 326.·49-s + 957.·51-s − 164.·53-s − 78.2·55-s + ⋯
L(s)  = 1  − 1.98·3-s + 1.26·5-s − 0.219·7-s + 2.93·9-s − 0.151·11-s − 0.974·13-s − 2.51·15-s − 1.32·17-s + 0.229·19-s + 0.435·21-s − 0.517·23-s + 0.601·25-s − 3.83·27-s − 1.85·29-s + 0.947·31-s + 0.300·33-s − 0.277·35-s − 0.361·37-s + 1.93·39-s + 0.278·41-s − 1.22·43-s + 3.71·45-s + 1.56·47-s − 0.951·49-s + 2.62·51-s − 0.425·53-s − 0.191·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(8.96829\)
Root analytic conductor: \(2.99471\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - 19T \)
good3 \( 1 + 10.3T + 27T^{2} \)
5 \( 1 - 14.1T + 125T^{2} \)
7 \( 1 + 4.06T + 343T^{2} \)
11 \( 1 + 5.53T + 1.33e3T^{2} \)
13 \( 1 + 45.6T + 2.19e3T^{2} \)
17 \( 1 + 92.8T + 4.91e3T^{2} \)
23 \( 1 + 57.0T + 1.21e4T^{2} \)
29 \( 1 + 290.T + 2.43e4T^{2} \)
31 \( 1 - 163.T + 2.97e4T^{2} \)
37 \( 1 + 81.3T + 5.06e4T^{2} \)
41 \( 1 - 73.1T + 6.89e4T^{2} \)
43 \( 1 + 346.T + 7.95e4T^{2} \)
47 \( 1 - 503.T + 1.03e5T^{2} \)
53 \( 1 + 164.T + 1.48e5T^{2} \)
59 \( 1 + 763.T + 2.05e5T^{2} \)
61 \( 1 - 545.T + 2.26e5T^{2} \)
67 \( 1 + 510.T + 3.00e5T^{2} \)
71 \( 1 + 294.T + 3.57e5T^{2} \)
73 \( 1 + 172.T + 3.89e5T^{2} \)
79 \( 1 + 973.T + 4.93e5T^{2} \)
83 \( 1 - 510.T + 5.71e5T^{2} \)
89 \( 1 - 845.T + 7.04e5T^{2} \)
97 \( 1 + 863.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95980899150039081021207445525, −11.00781401704267255453617188635, −10.12353048500049309578917150465, −9.433592377329433192821988870356, −7.27235713277545819774648647338, −6.31437177828056696038683492349, −5.54277737509315413162524977558, −4.54572926229080304835098145911, −1.86395500062007083049934331958, 0, 1.86395500062007083049934331958, 4.54572926229080304835098145911, 5.54277737509315413162524977558, 6.31437177828056696038683492349, 7.27235713277545819774648647338, 9.433592377329433192821988870356, 10.12353048500049309578917150465, 11.00781401704267255453617188635, 11.95980899150039081021207445525

Graph of the $Z$-function along the critical line