Properties

Label 2-152-1.1-c3-0-5
Degree $2$
Conductor $152$
Sign $1$
Analytic cond. $8.96829$
Root an. cond. $2.99471$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.62·3-s + 4.10·5-s − 11.2·7-s + 47.4·9-s + 71.9·11-s − 33.7·13-s + 35.4·15-s + 18.4·17-s + 19·19-s − 96.7·21-s − 86.8·23-s − 108.·25-s + 176.·27-s + 192.·29-s − 203.·31-s + 620.·33-s − 46.0·35-s + 281.·37-s − 291.·39-s − 139.·41-s − 70.7·43-s + 194.·45-s − 275.·47-s − 217.·49-s + 158.·51-s + 296.·53-s + 295.·55-s + ⋯
L(s)  = 1  + 1.66·3-s + 0.367·5-s − 0.605·7-s + 1.75·9-s + 1.97·11-s − 0.719·13-s + 0.609·15-s + 0.262·17-s + 0.229·19-s − 1.00·21-s − 0.787·23-s − 0.865·25-s + 1.25·27-s + 1.23·29-s − 1.17·31-s + 3.27·33-s − 0.222·35-s + 1.24·37-s − 1.19·39-s − 0.532·41-s − 0.250·43-s + 0.645·45-s − 0.856·47-s − 0.633·49-s + 0.436·51-s + 0.767·53-s + 0.724·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(8.96829\)
Root analytic conductor: \(2.99471\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 152,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.989773763\)
\(L(\frac12)\) \(\approx\) \(2.989773763\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - 19T \)
good3 \( 1 - 8.62T + 27T^{2} \)
5 \( 1 - 4.10T + 125T^{2} \)
7 \( 1 + 11.2T + 343T^{2} \)
11 \( 1 - 71.9T + 1.33e3T^{2} \)
13 \( 1 + 33.7T + 2.19e3T^{2} \)
17 \( 1 - 18.4T + 4.91e3T^{2} \)
23 \( 1 + 86.8T + 1.21e4T^{2} \)
29 \( 1 - 192.T + 2.43e4T^{2} \)
31 \( 1 + 203.T + 2.97e4T^{2} \)
37 \( 1 - 281.T + 5.06e4T^{2} \)
41 \( 1 + 139.T + 6.89e4T^{2} \)
43 \( 1 + 70.7T + 7.95e4T^{2} \)
47 \( 1 + 275.T + 1.03e5T^{2} \)
53 \( 1 - 296.T + 1.48e5T^{2} \)
59 \( 1 + 884.T + 2.05e5T^{2} \)
61 \( 1 + 67.8T + 2.26e5T^{2} \)
67 \( 1 - 737.T + 3.00e5T^{2} \)
71 \( 1 + 700.T + 3.57e5T^{2} \)
73 \( 1 + 91.3T + 3.89e5T^{2} \)
79 \( 1 + 1.13e3T + 4.93e5T^{2} \)
83 \( 1 - 71.6T + 5.71e5T^{2} \)
89 \( 1 + 296.T + 7.04e5T^{2} \)
97 \( 1 + 28.5T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72016270727663338604762981045, −11.72344544083607147635599233083, −9.873226755714305808821045373886, −9.499345128877203336813066758248, −8.528930677178514105425213913206, −7.36361699289116674150897889964, −6.26013975143462193044104847713, −4.20922659002537622058237343608, −3.16270926604489731687429460702, −1.73407631659981662052082709245, 1.73407631659981662052082709245, 3.16270926604489731687429460702, 4.20922659002537622058237343608, 6.26013975143462193044104847713, 7.36361699289116674150897889964, 8.528930677178514105425213913206, 9.499345128877203336813066758248, 9.873226755714305808821045373886, 11.72344544083607147635599233083, 12.72016270727663338604762981045

Graph of the $Z$-function along the critical line