| L(s) = 1 | + 0.267·5-s + 7-s + 5.19·11-s + 3.46·13-s + 4·17-s − 5.92·19-s + 0.267·23-s − 4.92·25-s − 4.92·29-s − 1.53·31-s + 0.267·35-s − 0.464·37-s + 9.19·41-s + 5.46·43-s − 1.46·47-s + 49-s + 8·53-s + 1.39·55-s + 9.46·59-s + 10.9·61-s + 0.928·65-s − 8.53·67-s + 14.6·71-s + 8.39·73-s + 5.19·77-s − 12.3·79-s − 12.9·83-s + ⋯ |
| L(s) = 1 | + 0.119·5-s + 0.377·7-s + 1.56·11-s + 0.960·13-s + 0.970·17-s − 1.36·19-s + 0.0558·23-s − 0.985·25-s − 0.915·29-s − 0.275·31-s + 0.0452·35-s − 0.0762·37-s + 1.43·41-s + 0.833·43-s − 0.213·47-s + 0.142·49-s + 1.09·53-s + 0.187·55-s + 1.23·59-s + 1.39·61-s + 0.115·65-s − 1.04·67-s + 1.73·71-s + 0.982·73-s + 0.592·77-s − 1.39·79-s − 1.41·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.058470707\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.058470707\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
| good | 5 | \( 1 - 0.267T + 5T^{2} \) |
| 11 | \( 1 - 5.19T + 11T^{2} \) |
| 13 | \( 1 - 3.46T + 13T^{2} \) |
| 17 | \( 1 - 4T + 17T^{2} \) |
| 19 | \( 1 + 5.92T + 19T^{2} \) |
| 23 | \( 1 - 0.267T + 23T^{2} \) |
| 29 | \( 1 + 4.92T + 29T^{2} \) |
| 31 | \( 1 + 1.53T + 31T^{2} \) |
| 37 | \( 1 + 0.464T + 37T^{2} \) |
| 41 | \( 1 - 9.19T + 41T^{2} \) |
| 43 | \( 1 - 5.46T + 43T^{2} \) |
| 47 | \( 1 + 1.46T + 47T^{2} \) |
| 53 | \( 1 - 8T + 53T^{2} \) |
| 59 | \( 1 - 9.46T + 59T^{2} \) |
| 61 | \( 1 - 10.9T + 61T^{2} \) |
| 67 | \( 1 + 8.53T + 67T^{2} \) |
| 71 | \( 1 - 14.6T + 71T^{2} \) |
| 73 | \( 1 - 8.39T + 73T^{2} \) |
| 79 | \( 1 + 12.3T + 79T^{2} \) |
| 83 | \( 1 + 12.9T + 83T^{2} \) |
| 89 | \( 1 - 14.2T + 89T^{2} \) |
| 97 | \( 1 + 1.07T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.366050569748867859493408661165, −8.739699860124162947939662373389, −7.955069964060904614450729302240, −7.00397195988806834503008826068, −6.15667459762770627374079003275, −5.52766286654012376560561691630, −4.12045328296947216208219627951, −3.75331969499395054947676936677, −2.17858273755822238038639113327, −1.11494321412766035622523018944,
1.11494321412766035622523018944, 2.17858273755822238038639113327, 3.75331969499395054947676936677, 4.12045328296947216208219627951, 5.52766286654012376560561691630, 6.15667459762770627374079003275, 7.00397195988806834503008826068, 7.955069964060904614450729302240, 8.739699860124162947939662373389, 9.366050569748867859493408661165