Properties

Label 2-1512-1.1-c1-0-3
Degree $2$
Conductor $1512$
Sign $1$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 6·11-s + 4·13-s + 3·17-s + 2·19-s + 2·23-s − 4·25-s + 6·29-s + 4·31-s + 35-s + 5·37-s + 5·41-s + 9·43-s − 5·47-s + 49-s − 6·53-s + 6·55-s + 7·59-s + 14·61-s − 4·65-s + 12·67-s − 8·71-s − 10·73-s + 6·77-s + 5·79-s − 11·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 1.80·11-s + 1.10·13-s + 0.727·17-s + 0.458·19-s + 0.417·23-s − 4/5·25-s + 1.11·29-s + 0.718·31-s + 0.169·35-s + 0.821·37-s + 0.780·41-s + 1.37·43-s − 0.729·47-s + 1/7·49-s − 0.824·53-s + 0.809·55-s + 0.911·59-s + 1.79·61-s − 0.496·65-s + 1.46·67-s − 0.949·71-s − 1.17·73-s + 0.683·77-s + 0.562·79-s − 1.20·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.360037733\)
\(L(\frac12)\) \(\approx\) \(1.360037733\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.612192944412722556202150775350, −8.431238567626249734522622514695, −7.981459185083832488608522600255, −7.19741903344551563894052091570, −6.09797569521616858066133504609, −5.42530488196202943341547851940, −4.40257414407364560450760734636, −3.35076291605718888331997816423, −2.54105990574533197533918554272, −0.826107243154137004518883426677, 0.826107243154137004518883426677, 2.54105990574533197533918554272, 3.35076291605718888331997816423, 4.40257414407364560450760734636, 5.42530488196202943341547851940, 6.09797569521616858066133504609, 7.19741903344551563894052091570, 7.981459185083832488608522600255, 8.431238567626249734522622514695, 9.612192944412722556202150775350

Graph of the $Z$-function along the critical line