Properties

Label 2-1512-1.1-c1-0-16
Degree $2$
Conductor $1512$
Sign $-1$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 2·11-s − 4·13-s + 3·17-s + 2·19-s − 6·23-s − 4·25-s + 6·29-s − 4·31-s + 35-s − 11·37-s + 5·41-s − 7·43-s − 5·47-s + 49-s − 6·53-s − 2·55-s − 9·59-s + 6·61-s + 4·65-s − 4·67-s − 8·71-s − 2·73-s − 2·77-s − 11·79-s + 5·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 0.603·11-s − 1.10·13-s + 0.727·17-s + 0.458·19-s − 1.25·23-s − 4/5·25-s + 1.11·29-s − 0.718·31-s + 0.169·35-s − 1.80·37-s + 0.780·41-s − 1.06·43-s − 0.729·47-s + 1/7·49-s − 0.824·53-s − 0.269·55-s − 1.17·59-s + 0.768·61-s + 0.496·65-s − 0.488·67-s − 0.949·71-s − 0.234·73-s − 0.227·77-s − 1.23·79-s + 0.548·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $-1$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.166364461823336339471398707217, −8.168700109725466244505479882013, −7.50859586020194953777192673110, −6.71248943603432804219900215576, −5.79626654899519538670964284688, −4.85551974950610032561351401695, −3.87880484327128264795072222540, −3.03742610634509483360169118311, −1.70503653258578344840698792805, 0, 1.70503653258578344840698792805, 3.03742610634509483360169118311, 3.87880484327128264795072222540, 4.85551974950610032561351401695, 5.79626654899519538670964284688, 6.71248943603432804219900215576, 7.50859586020194953777192673110, 8.168700109725466244505479882013, 9.166364461823336339471398707217

Graph of the $Z$-function along the critical line