Properties

Label 2-1512-1.1-c1-0-14
Degree $2$
Conductor $1512$
Sign $-1$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.73·5-s + 7-s + 5.19·11-s − 3.46·13-s − 4·17-s + 7.92·19-s − 3.73·23-s + 8.92·25-s − 8.92·29-s − 8.46·31-s − 3.73·35-s + 6.46·37-s + 1.19·41-s − 1.46·43-s − 5.46·47-s + 49-s − 8·53-s − 19.3·55-s − 2.53·59-s − 2.92·61-s + 12.9·65-s − 15.4·67-s + 2.66·71-s − 12.3·73-s + 5.19·77-s + 8.39·79-s − 0.928·83-s + ⋯
L(s)  = 1  − 1.66·5-s + 0.377·7-s + 1.56·11-s − 0.960·13-s − 0.970·17-s + 1.81·19-s − 0.778·23-s + 1.78·25-s − 1.65·29-s − 1.52·31-s − 0.630·35-s + 1.06·37-s + 0.186·41-s − 0.223·43-s − 0.797·47-s + 0.142·49-s − 1.09·53-s − 2.61·55-s − 0.330·59-s − 0.374·61-s + 1.60·65-s − 1.88·67-s + 0.315·71-s − 1.45·73-s + 0.592·77-s + 0.944·79-s − 0.101·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $-1$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 + 3.73T + 5T^{2} \)
11 \( 1 - 5.19T + 11T^{2} \)
13 \( 1 + 3.46T + 13T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
19 \( 1 - 7.92T + 19T^{2} \)
23 \( 1 + 3.73T + 23T^{2} \)
29 \( 1 + 8.92T + 29T^{2} \)
31 \( 1 + 8.46T + 31T^{2} \)
37 \( 1 - 6.46T + 37T^{2} \)
41 \( 1 - 1.19T + 41T^{2} \)
43 \( 1 + 1.46T + 43T^{2} \)
47 \( 1 + 5.46T + 47T^{2} \)
53 \( 1 + 8T + 53T^{2} \)
59 \( 1 + 2.53T + 59T^{2} \)
61 \( 1 + 2.92T + 61T^{2} \)
67 \( 1 + 15.4T + 67T^{2} \)
71 \( 1 - 2.66T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 - 8.39T + 79T^{2} \)
83 \( 1 + 0.928T + 83T^{2} \)
89 \( 1 + 17.7T + 89T^{2} \)
97 \( 1 + 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.180000771077112947926704660426, −8.116045413433333961712382849044, −7.44099345821775860490515778698, −6.98596344719317743109012914885, −5.74065504275775049181495892484, −4.61136514575065980489563030078, −4.00289156281530574603209504909, −3.17567269939134536186204241946, −1.58307190478424044227411320567, 0, 1.58307190478424044227411320567, 3.17567269939134536186204241946, 4.00289156281530574603209504909, 4.61136514575065980489563030078, 5.74065504275775049181495892484, 6.98596344719317743109012914885, 7.44099345821775860490515778698, 8.116045413433333961712382849044, 9.180000771077112947926704660426

Graph of the $Z$-function along the critical line