Properties

Label 2-1512-1.1-c1-0-13
Degree $2$
Conductor $1512$
Sign $1$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.37·5-s + 7-s + 4.37·13-s + 17-s − 4.74·19-s + 0.372·23-s + 6.37·25-s + 6.37·29-s + 8.37·31-s + 3.37·35-s − 1.37·37-s − 12.1·41-s − 3.74·43-s − 5.37·47-s + 49-s − 5.11·53-s − 11.7·59-s + 12.7·61-s + 14.7·65-s + 10.3·67-s − 1.62·71-s + 10·73-s + 8.11·79-s − 12.8·83-s + 3.37·85-s + 8.37·89-s + 4.37·91-s + ⋯
L(s)  = 1  + 1.50·5-s + 0.377·7-s + 1.21·13-s + 0.242·17-s − 1.08·19-s + 0.0776·23-s + 1.27·25-s + 1.18·29-s + 1.50·31-s + 0.570·35-s − 0.225·37-s − 1.89·41-s − 0.571·43-s − 0.783·47-s + 0.142·49-s − 0.702·53-s − 1.52·59-s + 1.63·61-s + 1.82·65-s + 1.26·67-s − 0.193·71-s + 1.17·73-s + 0.913·79-s − 1.41·83-s + 0.365·85-s + 0.887·89-s + 0.458·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.478613512\)
\(L(\frac12)\) \(\approx\) \(2.478613512\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 - 3.37T + 5T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 4.37T + 13T^{2} \)
17 \( 1 - T + 17T^{2} \)
19 \( 1 + 4.74T + 19T^{2} \)
23 \( 1 - 0.372T + 23T^{2} \)
29 \( 1 - 6.37T + 29T^{2} \)
31 \( 1 - 8.37T + 31T^{2} \)
37 \( 1 + 1.37T + 37T^{2} \)
41 \( 1 + 12.1T + 41T^{2} \)
43 \( 1 + 3.74T + 43T^{2} \)
47 \( 1 + 5.37T + 47T^{2} \)
53 \( 1 + 5.11T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 12.7T + 61T^{2} \)
67 \( 1 - 10.3T + 67T^{2} \)
71 \( 1 + 1.62T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 8.11T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 - 8.37T + 89T^{2} \)
97 \( 1 + 13.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.591836399998567384003422977026, −8.537508318941306227760430450575, −8.235497892805181103851836751206, −6.61752092332022440938603655445, −6.38749637166702653711173058457, −5.38540082561038822622832257031, −4.60079062830326861274780171710, −3.32279729888707225588242462887, −2.18301231556097927078347098038, −1.26710877142445906986564134364, 1.26710877142445906986564134364, 2.18301231556097927078347098038, 3.32279729888707225588242462887, 4.60079062830326861274780171710, 5.38540082561038822622832257031, 6.38749637166702653711173058457, 6.61752092332022440938603655445, 8.235497892805181103851836751206, 8.537508318941306227760430450575, 9.591836399998567384003422977026

Graph of the $Z$-function along the critical line