| L(s) = 1 | + 3.37·5-s + 7-s + 4.37·13-s + 17-s − 4.74·19-s + 0.372·23-s + 6.37·25-s + 6.37·29-s + 8.37·31-s + 3.37·35-s − 1.37·37-s − 12.1·41-s − 3.74·43-s − 5.37·47-s + 49-s − 5.11·53-s − 11.7·59-s + 12.7·61-s + 14.7·65-s + 10.3·67-s − 1.62·71-s + 10·73-s + 8.11·79-s − 12.8·83-s + 3.37·85-s + 8.37·89-s + 4.37·91-s + ⋯ |
| L(s) = 1 | + 1.50·5-s + 0.377·7-s + 1.21·13-s + 0.242·17-s − 1.08·19-s + 0.0776·23-s + 1.27·25-s + 1.18·29-s + 1.50·31-s + 0.570·35-s − 0.225·37-s − 1.89·41-s − 0.571·43-s − 0.783·47-s + 0.142·49-s − 0.702·53-s − 1.52·59-s + 1.63·61-s + 1.82·65-s + 1.26·67-s − 0.193·71-s + 1.17·73-s + 0.913·79-s − 1.41·83-s + 0.365·85-s + 0.887·89-s + 0.458·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.478613512\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.478613512\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
| good | 5 | \( 1 - 3.37T + 5T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 4.37T + 13T^{2} \) |
| 17 | \( 1 - T + 17T^{2} \) |
| 19 | \( 1 + 4.74T + 19T^{2} \) |
| 23 | \( 1 - 0.372T + 23T^{2} \) |
| 29 | \( 1 - 6.37T + 29T^{2} \) |
| 31 | \( 1 - 8.37T + 31T^{2} \) |
| 37 | \( 1 + 1.37T + 37T^{2} \) |
| 41 | \( 1 + 12.1T + 41T^{2} \) |
| 43 | \( 1 + 3.74T + 43T^{2} \) |
| 47 | \( 1 + 5.37T + 47T^{2} \) |
| 53 | \( 1 + 5.11T + 53T^{2} \) |
| 59 | \( 1 + 11.7T + 59T^{2} \) |
| 61 | \( 1 - 12.7T + 61T^{2} \) |
| 67 | \( 1 - 10.3T + 67T^{2} \) |
| 71 | \( 1 + 1.62T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 - 8.11T + 79T^{2} \) |
| 83 | \( 1 + 12.8T + 83T^{2} \) |
| 89 | \( 1 - 8.37T + 89T^{2} \) |
| 97 | \( 1 + 13.4T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.591836399998567384003422977026, −8.537508318941306227760430450575, −8.235497892805181103851836751206, −6.61752092332022440938603655445, −6.38749637166702653711173058457, −5.38540082561038822622832257031, −4.60079062830326861274780171710, −3.32279729888707225588242462887, −2.18301231556097927078347098038, −1.26710877142445906986564134364,
1.26710877142445906986564134364, 2.18301231556097927078347098038, 3.32279729888707225588242462887, 4.60079062830326861274780171710, 5.38540082561038822622832257031, 6.38749637166702653711173058457, 6.61752092332022440938603655445, 8.235497892805181103851836751206, 8.537508318941306227760430450575, 9.591836399998567384003422977026