Properties

Label 2-151-151.94-c1-0-3
Degree $2$
Conductor $151$
Sign $-0.402 - 0.915i$
Analytic cond. $1.20574$
Root an. cond. $1.09806$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.999 + 0.726i)2-s + (1.53 − 0.844i)3-s + (−0.146 + 0.450i)4-s + (−2.06 + 3.25i)5-s + (−0.922 + 1.96i)6-s + (−2.24 + 0.886i)7-s + (−0.944 − 2.90i)8-s + (0.0408 − 0.0644i)9-s + (−0.299 − 4.75i)10-s + (4.10 + 2.25i)11-s + (0.155 + 0.815i)12-s + (0.0152 + 0.0142i)13-s + (1.59 − 2.51i)14-s + (−0.425 + 6.75i)15-s + (2.28 + 1.66i)16-s + (1.97 + 0.783i)17-s + ⋯
L(s)  = 1  + (−0.706 + 0.513i)2-s + (0.887 − 0.487i)3-s + (−0.0731 + 0.225i)4-s + (−0.924 + 1.45i)5-s + (−0.376 + 0.800i)6-s + (−0.846 + 0.335i)7-s + (−0.333 − 1.02i)8-s + (0.0136 − 0.0214i)9-s + (−0.0946 − 1.50i)10-s + (1.23 + 0.679i)11-s + (0.0449 + 0.235i)12-s + (0.00422 + 0.00396i)13-s + (0.426 − 0.671i)14-s + (−0.109 + 1.74i)15-s + (0.572 + 0.415i)16-s + (0.480 + 0.190i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.402 - 0.915i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.402 - 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151\)
Sign: $-0.402 - 0.915i$
Analytic conductor: \(1.20574\)
Root analytic conductor: \(1.09806\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{151} (94, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 151,\ (\ :1/2),\ -0.402 - 0.915i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.418465 + 0.640923i\)
\(L(\frac12)\) \(\approx\) \(0.418465 + 0.640923i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad151 \( 1 + (1.82 + 12.1i)T \)
good2 \( 1 + (0.999 - 0.726i)T + (0.618 - 1.90i)T^{2} \)
3 \( 1 + (-1.53 + 0.844i)T + (1.60 - 2.53i)T^{2} \)
5 \( 1 + (2.06 - 3.25i)T + (-2.12 - 4.52i)T^{2} \)
7 \( 1 + (2.24 - 0.886i)T + (5.10 - 4.79i)T^{2} \)
11 \( 1 + (-4.10 - 2.25i)T + (5.89 + 9.28i)T^{2} \)
13 \( 1 + (-0.0152 - 0.0142i)T + (0.816 + 12.9i)T^{2} \)
17 \( 1 + (-1.97 - 0.783i)T + (12.3 + 11.6i)T^{2} \)
19 \( 1 + (-2.36 + 7.26i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (2.86 - 8.82i)T + (-18.6 - 13.5i)T^{2} \)
29 \( 1 + (-2.72 + 0.343i)T + (28.0 - 7.21i)T^{2} \)
31 \( 1 + (-8.77 + 2.25i)T + (27.1 - 14.9i)T^{2} \)
37 \( 1 + (4.67 + 4.38i)T + (2.32 + 36.9i)T^{2} \)
41 \( 1 + (-0.692 + 1.47i)T + (-26.1 - 31.5i)T^{2} \)
43 \( 1 + (-3.62 - 1.43i)T + (31.3 + 29.4i)T^{2} \)
47 \( 1 + (-0.363 + 0.771i)T + (-29.9 - 36.2i)T^{2} \)
53 \( 1 + (-0.612 + 3.21i)T + (-49.2 - 19.5i)T^{2} \)
59 \( 1 + (6.39 + 4.64i)T + (18.2 + 56.1i)T^{2} \)
61 \( 1 + (-3.48 - 1.91i)T + (32.6 + 51.5i)T^{2} \)
67 \( 1 + (-1.13 - 1.79i)T + (-28.5 + 60.6i)T^{2} \)
71 \( 1 + (-4.24 + 1.68i)T + (51.7 - 48.6i)T^{2} \)
73 \( 1 + (-2.76 + 1.09i)T + (53.2 - 49.9i)T^{2} \)
79 \( 1 + (1.62 + 0.416i)T + (69.2 + 38.0i)T^{2} \)
83 \( 1 + (9.16 - 11.0i)T + (-15.5 - 81.5i)T^{2} \)
89 \( 1 + (-6.12 + 7.40i)T + (-16.6 - 87.4i)T^{2} \)
97 \( 1 + (-3.85 - 6.07i)T + (-41.3 + 87.7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51219572394881807024494652408, −12.25812724389751694304454472367, −11.41474414893697516336326780595, −9.861485761918930178997038695201, −9.085987254332095952187370041781, −7.88570620013459656876818479201, −7.20205978216148416826365377272, −6.51758783083256368572925131497, −3.75721689769318494754113971995, −2.87164300970481210887863035259, 0.923340110519782439112529964258, 3.36035142823725034603516182551, 4.43989106868389392986924289682, 6.13359173133860541249830346550, 8.222802027611136978340405608782, 8.601983409520891322406379178546, 9.528421489720253535321102874320, 10.25413461099896366955615895536, 11.87715557872948003461963668188, 12.27512876749794188633105428990

Graph of the $Z$-function along the critical line