Properties

Label 2-151-151.80-c1-0-7
Degree $2$
Conductor $151$
Sign $0.976 - 0.217i$
Analytic cond. $1.20574$
Root an. cond. $1.09806$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.70 − 0.575i)2-s + (−1.37 + 2.17i)3-s + (5.18 − 2.30i)4-s + (−0.506 + 0.729i)5-s + (−2.48 + 6.67i)6-s + (−4.17 − 1.26i)7-s + (8.23 − 5.98i)8-s + (−1.54 − 3.27i)9-s + (−0.953 + 2.26i)10-s + (0.695 − 1.33i)11-s + (−2.13 + 14.4i)12-s + (0.750 + 0.372i)13-s + (−12.0 − 1.01i)14-s + (−0.885 − 2.10i)15-s + (11.2 − 12.5i)16-s + (−0.0210 + 0.0898i)17-s + ⋯
L(s)  = 1  + (1.91 − 0.407i)2-s + (−0.795 + 1.25i)3-s + (2.59 − 1.15i)4-s + (−0.226 + 0.326i)5-s + (−1.01 + 2.72i)6-s + (−1.57 − 0.476i)7-s + (2.91 − 2.11i)8-s + (−0.513 − 1.09i)9-s + (−0.301 + 0.717i)10-s + (0.209 − 0.401i)11-s + (−0.615 + 4.16i)12-s + (0.208 + 0.103i)13-s + (−3.21 − 0.270i)14-s + (−0.228 − 0.543i)15-s + (2.81 − 3.12i)16-s + (−0.00511 + 0.0217i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.217i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.976 - 0.217i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151\)
Sign: $0.976 - 0.217i$
Analytic conductor: \(1.20574\)
Root analytic conductor: \(1.09806\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{151} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 151,\ (\ :1/2),\ 0.976 - 0.217i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.23000 + 0.245658i\)
\(L(\frac12)\) \(\approx\) \(2.23000 + 0.245658i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad151 \( 1 + (-8.29 - 9.06i)T \)
good2 \( 1 + (-2.70 + 0.575i)T + (1.82 - 0.813i)T^{2} \)
3 \( 1 + (1.37 - 2.17i)T + (-1.27 - 2.71i)T^{2} \)
5 \( 1 + (0.506 - 0.729i)T + (-1.74 - 4.68i)T^{2} \)
7 \( 1 + (4.17 + 1.26i)T + (5.83 + 3.87i)T^{2} \)
11 \( 1 + (-0.695 + 1.33i)T + (-6.27 - 9.03i)T^{2} \)
13 \( 1 + (-0.750 - 0.372i)T + (7.85 + 10.3i)T^{2} \)
17 \( 1 + (0.0210 - 0.0898i)T + (-15.2 - 7.55i)T^{2} \)
19 \( 1 + (4.03 + 2.93i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (0.527 - 5.01i)T + (-22.4 - 4.78i)T^{2} \)
29 \( 1 + (0.179 - 0.0459i)T + (25.4 - 13.9i)T^{2} \)
31 \( 1 + (-4.73 - 2.86i)T + (14.3 + 27.4i)T^{2} \)
37 \( 1 + (3.63 - 2.41i)T + (14.3 - 34.1i)T^{2} \)
41 \( 1 + (0.0372 + 0.0449i)T + (-7.68 + 40.2i)T^{2} \)
43 \( 1 + (6.78 - 2.04i)T + (35.8 - 23.7i)T^{2} \)
47 \( 1 + (-1.57 + 0.266i)T + (44.3 - 15.4i)T^{2} \)
53 \( 1 + (-6.27 - 2.48i)T + (38.6 + 36.2i)T^{2} \)
59 \( 1 + (2.37 + 7.29i)T + (-47.7 + 34.6i)T^{2} \)
61 \( 1 + (-5.98 + 0.250i)T + (60.7 - 5.10i)T^{2} \)
67 \( 1 + (0.175 - 0.372i)T + (-42.7 - 51.6i)T^{2} \)
71 \( 1 + (1.37 + 5.86i)T + (-63.5 + 31.5i)T^{2} \)
73 \( 1 + (-11.4 + 10.7i)T + (4.58 - 72.8i)T^{2} \)
79 \( 1 + (-1.91 - 1.05i)T + (42.3 + 66.7i)T^{2} \)
83 \( 1 + (-0.950 - 4.98i)T + (-77.1 + 30.5i)T^{2} \)
89 \( 1 + (2.26 + 0.789i)T + (69.7 + 55.2i)T^{2} \)
97 \( 1 + (-0.765 + 0.0642i)T + (95.6 - 16.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11852923122805915903763968217, −12.04251823109602334676593197063, −11.13599978856373195385438012818, −10.50293863776033191421723446814, −9.623929173620821760481023970851, −6.89156877141657021577032466987, −6.18374053513761673761839773468, −5.06323398878655815770375711437, −3.89461701533842053310871934658, −3.22091554864119734594014576627, 2.44120092718468827048743482346, 4.03220617322483686429541533175, 5.54313511799964282669459472566, 6.44975891518812787615238497818, 6.82371079502775658261479745044, 8.230546608163256725385084104546, 10.44347048825798420272958313438, 11.85342821173083232654000389919, 12.32721843951809210807880888820, 12.86605287461005551137317377682

Graph of the $Z$-function along the critical line